
Natural for DL/I
Version 2.3.7

This document applies to Natural for DL/I Version 2.3.7 and to all subsequent releases. Specifications contained
herein are subject to change and these changes will be reported in subsequent release notes or new editions.

© June 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents
................. 1Natural for DL/I - Overview
................. 1Natural for DL/I - Overview
................... 2General Information
................... 2General Information
................... 2Basic Principles
.................. 3Accessing DL/I Data
.............. 4Natural Parameter Modifications for DL/I
.............. 4Natural Parameter Modifications for DL/I
................. 4Parameters in NDLPARM
......... 5DFBNUM - Maximum Entries in Translated Format Buffer
...... 5DFFNUM - Maximum Fields in Single Entry of Translated Format Buffer
........... 5FLBNUM - Number of Entries in Fast Locate Buffer
.......... 6INGSIZE - Initial Size of Buffer to Copy Parameter List
........... 6INGOSIZ - Initial Size of I/O Area for DL/I Calls
........... 6INITCAL - Issues INIT Call at Transaction Start
............ 6PCBLEV - Maximum Number of PCB Levels
........... 7PCBNUM - Maximum Number of PCBs in a PSB
............. 7RELEVNT - Requests Relocation Event
............. 7RESINDB - NDB Resident in Buffer Pool
............. 7RESINSB - NSB Resident in Buffer Pool
............. 8RESIUDF - UDF Resident in Buffer Pool
............ 8SASIZE - Size of Natural Save Area for DL/I
........ 8SEQNUM - Maximum Number of Nested Sequential Accesses
.............. 8SEQSSA - Maximum Size of an SSA
........... 9THCSIZE - Table Size to Save Natural Field Values
................. 9TRACE - Trace Options
............. 9TYPCHCK - Numeric/Packed Data Check
............. 10TYPWARN - Issues Data Check Warning
............... 10WORKLGH - Size of Work Areas
................... 11Storage Estimates
.............. 12Natural for DL/I in OS/390 Environments
.................. 13Installing Natural for DL/I
.................. 13Installing Natural for DL/I
.................... 13Prerequisites
............... 13Installation Tape - OS/390 Systems
.............. 13Copying the Tape Contents to Disk
.............. 15Installation Tape - VSE/ESA Systems
.............. 15Copying the Tape Contents to Disk
.................. 16Installation Procedure
.................. 19Installation Verification
...................... 20Operation
..................... 20Operation
.................. 20Procedure NATPSB
.................. 25Procedure NATDBD
.............. 26Using Logical Databases with Natural
.............. 26Using Index Databases with Natural
.................. 27Procedure NATUDF
............... 28Segment Identification Statement
................ 29Segment Field Description
............ 31Generation of DDMs from DL/I Segment Types
................... 32System File Structure
................... 32System File Structure
................... 32The NDB Subfile

iCopyright © Software AG 2002

Table of ContentsNatural for DL/I - Overview

.................... 33The NSB Subfile

.................... 33The UDF Subfile

.................. 34Natural for DL/I Objects

................. 34Displaying Keys of UDF Blocks

................ 34Displaying the Size of NDL Objects

.................. 34Displaying NDL Objects

............... 35Control Blocks in Separate Buffer Pool

............... 36Control Blocks in Buffer Pool Blacklist

.............. 36Natural for DL/I Objects and Natural DDMs

.................... 37Natural Batch Utilities

.................... 37Natural Batch Utilities

.......... 37Transfer of NDBs/NSBs/UDFs from one System File to Another

............... 38Unloading the NDBs, NSBs and UDFs

................ 39Loading NDBs, NSBs and UDFs

............ 40Selecting NDBs, NSBs and UDFs from a Dataset

.............. 42Utility NDUDFGEN for Natural Data Areas

.................. 42Input for NDUDFGEN

....................... 45Execution

...................... 45Execution

.................... 45PSB Scheduling

.................. 45The NATPSB Command

.............. 46PSB Scheduling in a Batch Environment

.............. 49PSB Scheduling in a CICS Environment

............. 49PSB Scheduling in an IMS/TM Environment

................... 50CALLNAT Interface

................. 50The NDLPCBAD Subprogram

................. 51The NDLPSBSC Subprogram

................ 52Support of IMS-Specific Features

........... 52Symbolic Checkpoint/Restart Functions - CHKP, XRST

........... 54The INIT Call to Enable Data Availability Status Codes

.................... 54Fast Path Support

.................... 55Support of GSAM

......... 57Processing in CICS Pseudo-Conversational Mode or under IMS/TM

................ 58Programming Language Considerations

................ 58Programming Language Considerations

.............. 58Natural versus Third Generation Languages

................. 59Natural Statements with DL/I

................. 59BACKOUT TRANSACTION

..................... 59DELETE

..................... 59DISPLAY

.................. 60END TRANSACTION

...................... 60FIND

................. 62GET TRANSACTION DATA

...................... 62READ

..................... 63RELEASE

...................... 63STORE

..................... 64UPDATE

...................... 64WRITE

................ 64Statements not Available for DL/I

................ 65Natural System Variables with DL/I

...................... 65*ISN

..................... 65*NUMBER

.................. 66Problem Determination Guide

.................. 66Problem Determination Guide

.................. 68Performance Considerations

.................. 68Performance Considerations

Copyright © Software AG 2002ii

Natural for DL/I - OverviewTable of Contents

...................... 68Parameters

...................... 68DBID

.................. 68Global and Local Data Areas

.................... 68FIND Statements

................. 68Direct Access to Lower Levels

.................... 68DBLOG Utility

...................... 69DL/I Services

..................... 69DL/I Services

.................... 69NDB Maintenance

................... 69Menu and Functions

.................. 70Select an NDB from a List

............... 71Select an NDB Segment from a List

................ 73Edit an NDB Segment Description

.............. 79Generate DDM from Segment Description

.................... 82NSB Maintenance

.................. 82Select an NSB from a list:

............... 83List PCBs and SENSECs of an NSB:

iiiCopyright © Software AG 2002

Table of ContentsNatural for DL/I - Overview

Natural for DL/I - Overview
This documentation provides information on Natural in a DL/I environment. It describes the installation and
operation of Natural for DL/I, as well as special considerations on Natural statements when used with DL/I.

This documentation covers:

General Information Brief information on features.

Natural Parameter
Modifications for DL/I

Explains parameters contained in NDLPARM, storage estimates, and
Natural for DL/I in OS/390 environments.

Installing Natural for DL/I How to install Natural for DL/I.

Operation Describes procedures NATPSB, NATDBD, NATUDF, and the generation
of DDMs from DL/I segment types.

System File Structure Describes the database structure, the segment data and the processing intent
of an application.

Natural Batch Utilities Describes the system file transfer of NDBs, NSBs and UDFs from one
FDIC and the use of the batch utility NDUDFGEN to generate Natural data
areas.

Execution Describes PSB scheduling, the CALLNAT interface, support of
IMS-specific features, fast path and GSAM, and CICS mode processing
under IMS/TM.

Programming Language
Consideratons

Natural versus Third Generation Languages,
Natural Statements with DL/I ,
Natural System Variables with DL/I .

Problem Determination
Guide

Actions required to correct a given problem.

Performance
Considerations

How to increase the performance of Natural in a DL/I environment.

DL/I Services Terminology and maintenance of NDBs and NSBs.

For a list of DL/I status codes and abend codes (under CICS only), refer to Status Codes and Abend Codes (in
the Natural Messages and Codes documentation).

1Copyright © Software AG 2002

Natural for DL/I - OverviewNatural for DL/I - Overview

General Information
This section covers the following topics:

Basic Principles
Accessing DL/I Data

Basic Principles
With Natural for DL/I, a Natural user can access and update data stored in a DL/I database. The Natural user can
be executing in batch mode or under the control of the TP monitor CICS or IMS/TM .

A DL/I database is represented to Natural as a set of files, each file representing one database segment type.
Each file or segment type must have an associated DDM generated and stored on the Natural FDIC system file.

Since Natural for DL/I is an extension to Natural, nearly all of the information contained in the Natural
documentation applies to its use in the DL/I environment as well as in the Adabas environment.

The Natural statements used to access DL/I databases are a subset of those provided with the Natural language.
No new statements are needed to access a DL/I database.

Applications developed using Natural for DL/I operate as standard DL/I applications. This means that all access
to DL/I databases performed by Natural follows the DL/I product conventions. For an online Natural session or
batch Natural program to issue a DL/I database call, a PSB must first be scheduled. The PCB in use must have
segment sensitivity and the appropriate PROCOPT parameter must be specified for Natural, to be able to
perform a segment update. Only standard DL/I database calls are issued by Natural.

Copyright © Software AG 20022

General InformationGeneral Information

Accessing DL/I Data
Natural for DL/I allows Natural programs to access DL/I databases using Natural statements.

To access DL/I data, Natural requires certain information on these data. This information mainly consists of four
types of control blocks:

the original database descriptions (DBDs) and program specification blocks (PSBs) which are required by
DL/I itself;
suitable copies of DL/I DBDs and PSBs for Natural, called NDBs and NSBs;
user-defined fields (UDFs);
Natural DDMs generated from NDBs and UDFs.

All information required by Natural to access DL/I databases is stored and maintained in the Natural FDIC
system file. The Natural FDIC system file can be an Adabas file (if Adabas is installed), or a VSAM file (only in
CICS environments).

As is the case with any DL/I application, a DL/I DBDGEN and PSBGEN must be performed to define the data
structure the Natural application is to have access to, and the processing intent this application has on these data.
This same information, which is contained in the DBD and PSB source statements, must also be defined to
Natural.

The Natural batch procedures NATDBD and NATPSB are used to add this information to the Natural FDIC
system file. They generate NDBs and NSBs from the respective DBDs and PSBs, using the DBDGEN and
PSBGEN source respectively, as input.

It is the administrator’s responsibility to ensure that the contents of the DL/I DBDLIB and PSBLIB and the
Natural FDIC system file are compatible. It is therefore recommended that the DL/I procedures DBDGEN and
PSBGEN and the Natural procedures NATDBD and NATPSB always be executed as a pair.

The DBDGEN source usually does not define all fields within a segment. Additional segment fields, called
user-defined fields (UDFs), can be entered as part of creating the DDMs. UDFs in Natural are added by using
either the batch utility NATUDF, the EDIT Segment Description facility of SYSDDM, or Predict.

Once all the necessary information has been stored on the Natural FDIC system file, Natural DDMs defining the
DL/I database segment types can be created.

3Copyright © Software AG 2002

Accessing DL/I DataGeneral Information

Natural Parameter Modifications for DL/I
Natural parameter default values for DL/I can be changed to meet your particular requirements. The object
module NDLPARM, which is used for Natural static parameter assignment in a DL/I environment, must then be
appropriately modified and reassembled.

This section covers the following topics:

Parameters in NDLPARM
Storage Estimates
Natural for DL/I in OS/390 Environments

Parameters in NDLPARM
The following parameters are contained in NDLPARM:

DFBNUM - Maximum Entries in Translated Format Buffer
DFFNUM - Maximum Fields in Single Entry of Translated Format Buffer
FLBNUM - Number of Entries in Fast Locate Buffer
INGSIZE - Initial Size of Buffer to Copy Parameter List
INGOSIZ - Initial Size of I/O Area for DL/I Calls
INITCAL - Issues INIT Call at Transaction Start
PCBLEV - Maximum Number of PCB Levels
PCBNUM - Maximum Number of PCBs in a PSB
RELEVNT - Requests Relocation Event
RESINDB - NDB Resident in Buffer Pool
RESINSB - NSB Resident in Buffer Pool
RESIUDF - UDF Resident in Buffer Pool
SASIZE - Size of Natural Save Area for DL/I
SEQNUM - Maximum Number of Nested Sequential Accesses
SEQSSA - Maximum Size of an SSA
THCSIZE - Table Size to Save Natural Field Values
TRACE - Trace Options
TYPCHCK - Numeric/Packed Data Check
TYPWARN - Issues Data Check Warning
WORKLGH - Size of Work Areas

Copyright © Software AG 20024

Natural Parameter Modifications for DL/INatural Parameter Modifications for DL/I

DFBNUM - Maximum Entries in Translated Format Buffer

Possible Values Default Value

5 - 200 25

This parameter is used to indicate the maximum number of entries in the table of translated format buffers.

An entry in this table is created for each active Natural input/output statement (FIND, READ, UPDATE,
STORE).

When increasing DFBNUM or DFFNUM, take into consideration that the allocated storage area size is obtained
by multiplying these values and not by adding them.

DFFNUM - Maximum Fields in Single Entry of Translated Format Buffer

Possible Values Default Value

5 - 1000 10

This parameter is used to indicate the average number of fields contained in each single entry of the table of
translated format buffers.

A field entry in this table is created for each field referenced in a Natural input/output statement (FIND, READ,
UPDATE, STORE).

When increasing DFFNUM or DFBNUM, take into consideration that the allocated storage area size is obtained
by multiplying these values and not by adding them.

FLBNUM - Number of Entries in Fast Locate Buffer

Possible Values Default Value

0 - 32767 50

This parameter is used to indicate the number of entries in the Fast Locate Buffer. This buffer holds absolute
addresses of NDL objects (that is, NDBs, NSBs, UDFs) in the buffer pool.

The addresses are stored in wrap-around technique.

This buffer is especially useful if NDL objects have been marked as "resident" in the buffer pool (see the related
parameters RESINDB, RESINSB, RESIUDF).

It allows Natural for DL/I to use the Fast Locate algorithm of the Natural buffer pool manager when locating
objects.

5Copyright © Software AG 2002

DFBNUM - Maximum Entries in Translated Format BufferNatural Parameter Modifications for DL/I

INGSIZE - Initial Size of Buffer to Copy Parameter List

Possible Values Default Value

1000 - 32767 (bytes) 1000

This parameter is used to indicate the initial size of the buffer which is used to copy the DL/I call parameter list
and the call parameters below 16 MB if Natural operates in an OS/390 environment. If the initial size is not
sufficient, Natural automatically increases the size of this buffer accordingly.

INGOSIZ - Initial Size of I/O Area for DL/I Calls

Possible Values Default Value

1000 - 32767 (bytes) 1000

This parameter is used to indicate the initial size of the I/O area for DL/I calls. This area is re-used for
subsequent DL/I calls if no GET HOLD call has been issued.

If the initial size is not sufficient, Natural automatically increases the size of this buffer accordingly.

INITCAL - Issues INIT Call at Transaction Start

Possible Values Default Value

NO/YES NO

This parameter is used to inform IMS that Natural is prepared to accept status codes BA or BB regarding data
unavailability.

The setting of this parameter only applies if Natural runs in a BMP or MPP region.

PCBLEV - Maximum Number of PCB Levels

Possible Values Default Value

1 - 15 10

This parameter is used to indicate the maximum number of PCB levels which can be processed by Natural.

When increasing PCBLEV, take into consideration that the allocated storage area size is obtained by multiplying
these values and not by adding them.

Copyright © Software AG 20026

Natural Parameter Modifications for DL/IINGSIZE - Initial Size of Buffer to Copy Parameter List

PCBNUM - Maximum Number of PCBs in a PSB

Possible Values Default Value

1 - 255 25

This parameter is used to indicate the maximum number of PCBs which can be contained within a single PSB.

When increasing PCBNUM, take into consideration that the allocated storage area size is obtained by
multiplying these values and not by adding them.

RELEVNT - Requests Relocation Event

Possible Values Default Value

NO/YES NO

This parameter is used to inform the Natural nucleus whether or not Natural for DL/I requests relocation events.

With RELEVNT=YES, Natural for DL/I is called for relocation on every relocation event, that is, even if no
DL/I call has been issued since the last relocation event.

With RELEVNT=NO, Natural for DL/I is not called for relocation. Instead, it checks itself whether relocation is
required before a DL/I call is issued.

RESINDB - NDB Resident in Buffer Pool

Possible Values Default Value

NO/YES YES

This parameter is used to indicate whether NDBs are to be kept resident in the buffer pool.

RESINSB - NSB Resident in Buffer Pool

Possible Values Default Value

NO/YES YES

This parameter is used to indicate whether NSBs are to be kept resident in the buffer pool.

7Copyright © Software AG 2002

PCBNUM - Maximum Number of PCBs in a PSBNatural Parameter Modifications for DL/I

RESIUDF - UDF Resident in Buffer Pool

Possible Values Default Value

NO/YES YES

This parameter is used to indicate whether UDFs are to be kept resident in the buffer pool.

SASIZE - Size of Natural Save Area for DL/I

Possible Values Default Value

1000 - 3000 (bytes) 1000

This parameter is used to indicate the size of the save area.

Do not increase the default value, unless you receive an error message which indicates that a save area overflow
has occurred.

SEQNUM - Maximum Number of Nested Sequential Accesses

Possible Values Default Value

5 - 100 20

This parameter is used to indicate the maximum number of nested sequential accesses which can be processed by
Natural.

When increasing the values for the SEQNUM and SEQSSA parameters, remember that the storage area allocated
is dependent on the product of these areas, not their sum.

SEQSSA - Maximum Size of an SSA

Possible Values Default Value

10 - 500 (bytes) 50

This parameter is used to indicate the maximum size of an SSA related to sequential access.

When increasing the values for the SEQNUM and SEQSSA parameters, remember that the storage area allocated
is dependent on the product of these areas, not their sum.

Copyright © Software AG 20028

Natural Parameter Modifications for DL/IRESIUDF - UDF Resident in Buffer Pool

THCSIZE - Table Size to Save Natural Field Values

Possible Values Default Value

2000 - 32000 (bytes) 3000

This parameter only applies under IMS/TM or under CICS in pseudo-conversational mode.

This parameter is used to indicate the size of the table which is used to save field values in hold status when
running under IMS/TM or under CICS in pseudo-conversational mode.

TRACE - Trace Options

Possible Values Explanation

ALL Trace all modules

CMD Trace command execution

REQ Trace request modules

ROU Trace routines

SER Trace service modules

OFF Trace is not active. Default value.

This parameter is used to indicate whether Natural trace information is to be created and printed or not.

The options CMD, REQ, SER and ROU can be combined.

TYPCHCK - Numeric/Packed Data Check

Possible Values Default Value

NO/YES NO

This parameter is used to indicate whether numeric or packed segment fields from DL/I are to be checked for
valid data and repaired, if necessary.

With TYPCHCK=NO, no data check is performed. Natural for DL/I would abend with data exception if, for
example, a packed field contained blanks.

With TYPCHCK=YES, a data check is performed. If the field does not contain format compatible data, it is
filled with zeroes. In addition, a message is issued, depending on the setting of the parameter TYPWARN (see
below).

9Copyright © Software AG 2002

THCSIZE - Table Size to Save Natural Field ValuesNatural Parameter Modifications for DL/I

TYPWARN - Issues Data Check Warning

Possible Values Default Value

NO/YES NO

This parameter only applies if TYPCHCK has been specified (see above).

This parameter is used to indicate whether a message is to be issued if a data check and repair has been
performed.

With TYPWARN=NO, no message is issued if a data repair has been performed.

With TYPWARN=YES, a message is issued if a data repair has been performed. This message displays the short
name of the field in error. The message is issued as a warning (only), which means that:

The message is not issued via the Natural error exit but is directly inserted into the page buffer.
The message(s) is (are) only issued when the page buffer is full.
There is no backout transaction.
The program flow is not interrupted.

WORKLGH - Size of Work Areas

Possible Values Default Value

1000 - 3000 1000

This parameter is used to indicate the size of the work areas. Natural allocates six work areas of this size.

Do not increase the default value, unless you receive an error message which indicates that a work area overflow
has occurred.

Copyright © Software AG 200210

Natural Parameter Modifications for DL/ITYPWARN - Issues Data Check Warning

Storage Estimates
The memory size required by Natural for DL/I is determined by the following items:

1. Object code: 90 KB.
2. Save areas: 3 KB.
3. Work areas: 6 KB.
4. Fast Locate Buffer: 12 bytes for each entry.
5. XRST buffer: 2 KB.
6. Internal tables: the amount of storage allocated depends on parameters specified in the module NDLPARM.

The following formula can be used to compute the amount of storage required for initial table allocation:
Amount of Storage =
SEQNUM * (SEQSSA + 64) + 32 +
DFBNUM * (28 + (DFFNUM * 12)) + 20 +
PCBNUM * (24 + 12 + (PCBLEVL * 5)) + 20 +
TCHSIZE
The above formula can be described as follows:

Term Computational Expression

Sequential Access Table SEQNUM * (SEQSSA + 64) + 32

Field Table DFBNUM * (28 + (DFFNUM * 12)) + 20

PCB Map PCBNUM * (24 + 12 + (PCBLEVL * 5)) + 20

Table of Fields in Hold TCHSIZE

If the standard values of these NDLPARM parameters are used in the above formula, 14 KB of storage is
allocated.

7. Segment I/O areas are to be added on additionally.

Note:
The object code is shared among all Natural sessions. There is a copy of all other areas for each active Natural
session.

The storage required for save areas, work areas, Fast Locate Buffer, XRST buffer and internal tables is allocated
from the thread at the initialization of the Natural session. Six GETMAINs are performed, the sizes of which are
determined by the values of the parameters in the NDLPARM module. If the default values of the NDLPARM
parameters are used, the total size required is 27 KB.

The total size available is determined by the profile parameter DLISIZE in the Natural parameter module
(NATPARM); see the Natural Parameter Reference documentation.

11Copyright © Software AG 2002

Storage EstimatesNatural Parameter Modifications for DL/I

The BUS (Buffer Usage Statistics) command can be used to obtain information on the sizes of the buffers
allocated by Natural for DL/I. The following information is provided:

Buffer Content

DLISIZE0 contains the Fast Locate Buffer, the XRST buffer, and the save areas.

DLISIZE1 contains the work areas.

DLISIZE2 contains the sequential access table.

DLISIZE3 contains the field table .

DLISIZE4 contains the PCB map .

DLISIZE5 contains the table of fields in hold status.

Natural for DL/I in OS/390 Environments
Before Natural issues a DL/I call in an OS/390 environment, it checks whether the call parameter list or any of
the call parameters reside above the 16 MB line. This is the case if the Natural threads have been placed above
this line. If so, the parameter list and all parameters are copied into a buffer which has been allocated below the
line via GETMAIN. The pointers in the parameter list are modified accordingly to point to the new parameters.

The initial size of this buffer is set by the INGSIZE parameter of NDLPARM. If the initial size is not sufficient,
Natural automatically increases the size of this buffer accordingly.

This overhead is required because DL/I terminates programs abnormally if parameter addresses passed in DL/I
calls do not refer to code or storage areas below the 16 MB line.

Copyright © Software AG 200212

Natural Parameter Modifications for DL/INatural for DL/I in OS/390 Environments

Installing Natural for DL/I
This section describes step by step how to install Natural for DL/I, also referred to as NDL.

Prerequisites
Installation Tape - OS/390 Systems
Installation Tape - VSE/ESA Systems
Installation Procedure
Installation Verification

Prerequisites
Products and versions are specified under Natural and Other Software AG Products in and
Operating/Teleprocessing Systems Required in the current Natural Release Notes for Mainframes.

Installation Tape - OS/390 Systems
The installation tape contains the datasets listed in the table below. The sequence of the datasets is shown in the
Report of Tape Creation which accompanies the installation tape.

Dataset Name Contents

NDLnnn.LOAD Natural executable modules necessary for the linkage editor.

NDLnnn.SRCE Macros and sources for the parameter module NDLPARM and for the batch procedures
NATDBD/NATPSB.

NDLnnn.JOBS Example installation jobs.

The notation nnn in dataset names represents the version number of the product.

Copying the Tape Contents to Disk

If you are using System Maintenance Aid (SMA), refer to the SMA documentation (included on the current
edition of the Natural documentation CD).

If you are not using SMA, follow the instructions below.

This section explains how to:

Copy data set COPY.JOB from tape to disk.
Modify this data set to conform with your local naming conventions.

The JCL in this data set is then used to copy all data sets from tape to disk.

If the datasets for more than one product are delivered on the tape, the dataset COPY.JOB contains the JCL to
unload the datasets for all delivered products from the tape to your disk.

After that, you will have to perform the individual install procedure for each component.

13Copyright © Software AG 2002

Installing Natural for DL/IInstalling Natural for DL/I

Step 1 - Copy data set COPY.JOB from tape to disk

The data set COPY.JOB (label 2) contains the JCL to unload all other existing data sets from tape to disk. To
unload COPY.JOB, use the following sample JCL:

//SAGTAPE JOB SAG,CLASS=1,MSGCLASS=X
//* ---------------------------------
//COPY EXEC PGM=IEBGENER
//SYSUT1 DD DSN=COPY.JOB,
// DISP=(OLD,PASS),
// UNIT=(CASS,,DEFER),
// VOL=(,RETAIN,SER= <Tnnnnn>),
// LABEL=(2,SL)
//SYSUT2 DD DSN= <hilev> .COPY.JOB,
// DISP=(NEW,CATLG,DELETE),
// UNIT=3390,VOL=SER= <vvvvvv> ,
// SPACE=(TRK,(1,1),RLSE),
// DCB=*.SYSUT1
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//

Where:

<hilev> is a valid high level qualifier

<Tnnnnn> is the tape number

<vvvvvv> is the desired volser

Step 2 - Modify COPY.JOB to conform with your local naming conventions

There are three parameters you have to set before you can submit this job:

Set HILEV to a valid high level qualifier.
Set LOCATION to a storage location.
Set EXPDT to a valid expiration date.

Step 3 - Submit COPY.JOB

Submit COPY.JOB to unload all other data sets from the tape to your disk.

Copyright © Software AG 200214

Installing Natural for DL/ICopying the Tape Contents to Disk

Installation Tape - VSE/ESA Systems
The installation tape contains the datasets listed in the table below. The sequence of the datasets is shown in the
Report of Tape Creation which accompanies the installation tape.

Dataset Name Contents

NDLnnn.LIBR LIBR backup file

The notation nnn in dataset names represents the version number of the product.

Copying the Tape Contents to Disk

Copy the sublibrary containing the sample installation jobs from tape using the following JCS:

 * $$ JOB JNM=NATJOBS,CLASS=0,DISP=D,LDEST=*,SYSID=1
 * $$ LST CLASS=A,DISP=D
 // JOB NATJOBS
 // ASSGN SYS005,IGN
 // ASSGN SYS006, cuu ,VOL=Tnnnnn
 // MTC REW, cuu
 // MTC FSF,SYS006, nn
 * Tape positioned at tape mark nn
 * *** NOW PROCESSING NDL nnn .LIBR - SUBLIBRARY NDLnnnJ ***
 // EXEC LIBR,PARM=’MSHP’
 RESTORE SUBLIB=SAGLIB.NDL nnnJ:SAGLIB.NDL nnnJ -
 TAPE=SYS006 -
 LIST=YES -
 REPLACE=NO
 /*
 // MTC REW,SYS006
 /*
 /&
 * $$ EOJ

Notation:

cuu represents the physical unit address of the tape drive.

nn represents the file sequence number as shown in the Report of Tape Creation.

nnn represents the version number of the product.

If you are not using System Maintenance Aid, adapt and run job NDLTAPE to copy the dataset from tape to
disk. NDLTAPE is contained in sublibrary NDLnnnJ on the Natural installation tape.

The dataset type and the space it requires on disk are shown in the Report of Tape Creation.

15Copyright © Software AG 2002

Installation Tape - VSE/ESA SystemsInstalling Natural for DL/I

Installation Procedure
The NDL installation procedure consists of the following steps:

Step 1: Create the NDL Parameter Module - Job I055, Step 1500

Modify the NDL parameter module NDLPARM as described in the section Natural Parameter Modifications for
DL/I .

Assemble and link/catalog NDLPARM.

Step 2: Modify the Natural Parameter Modules - Jobs I060 and I080

Modify the appropriate I060 and I080 jobs according to the TP monitor or batch modules you are relinking; for
example, NATI060 for batch and NCII080 for CICS. This applies also to Step 3 below.

Add the parameter DLISIZE and specify DLISIZE=27.
This value applies if the default values of the NDLPARM parameters are used.

Add an NTDB macro specifying the database identification list (DBID list) that relates to DL/I segment types.
The numbers specified in this DBID list must be in the range from 1 to 254. They indicate which DBIDs are
reserved for DL/I segment types. Up to 254 entries can be specified. All Natural DDMs that refer to a DL/I
segment type are cataloged with a DBID from this list. The number with the lowest value in this list is the default
DBID for DL/I segment types.

Examples:

NTDB DLI,(250,253,252)
NTDB DLI,250

Note:
Values for DL/I database IDs above 255 are not possible.

Step 3: Link the Natural Nucleus - Job I060 and I080

Under OS/390:
Add the following INCLUDE instructions and the corresponding DD statements to the link step for Natural and
link-edit the executable module:

CICS IMS/TM Batch Mode

INCLUDE NDLLIB(NDLNUC) INCLUDE NDLLIB(NDLNUC) INCLUDE NDLLIB(NDLNUC)

INCLUDE NDLLIB(NDLSIOCX) INCLUDE NDLLIB(NDLSIOBA) INCLUDE NDLLIB(NDLSIOBA)

INCLUDE
SMALIB(NDLPARM)

INCLUDE SMALIB(NDLPARM) INCLUDE SMALIB(NDLPARM)

INCLUDE TPSLIB(ASMTDLI) INCLUDE DLILIB(ASMTDLI) INCLUDE DLILIB(ASMTDLI)

Copyright © Software AG 200216

Installing Natural for DL/IInstallation Procedure

Under VSE/ESA:
Add the following INCLUDE instructions and the corresponding sublibraries for NDL to the search chain for the
linkage editor and link-edit the executable module:

CICS Batch Mode

INCLUDE NDLNUC INCLUDE NDLNUC

INCLUDE NDLSIOCX INCLUDE NDLSIOBA

INCLUDE NDLPARM INCLUDE NDLPARM

INCLUDE ASMTDLI INCLUDE ASMTDLI

Under CICS, the link-edit of the load module that contains NDL can be done in any of the following ways:

Include all NDL modules (that is, NDLNUC, NDLPARM and NDLSIOCX) and the DL/I module
ASMTDLI in the link-edit of Natural.
Include all NDL modules (that is, NDLNUC, NDLPARM and NDLSIOCX) and the DL/I module
ASMTDLI in the link-edit of the Natural TP driver.
This way of link-editing only applies if the Natural TP driver runs separately from the Natural nucleus.
Link-edit all NDL modules (that is, NDLNUC, NDLPARM and NDLSIOCX), the DL/I module ASMTDLI
and an alternate Natural parameter module as a separate module with the mandatory entry name
CMPRMTB. The name of the resulting module is optional.
This way of link-editing only applies if an alternate parameter module ("PARM=") is used. If so, under
CICS, an additional CICS PPT entry with PROGRAM=name is required.

Link-edit all NDL modules (that is, NDLNUC, NDLPARM and NDLSIOCX) and the DL/I module
ASMTDLI as a separate module with the mandatory entry name NATGWDLI. The name of the resulting
module is optional. If it is different from NATGWDLI, however, it must be specified as an alias name in an
NTALIAS macro entry of the Natural parameter module.
This way of link-editing only applies if the Natural Resolve CSTATIC Addresses feature (RCA) is used. If
so, under CICS, an additional CICS PPT entry with PROGRAM=name is required.

Include all environment-independent NDL Modules (i.e. NDLNUC and NDLPARM) in the link-edit of
Natural
Include the environment-dependent NDL I/O module (NDLSIOCX) in the link-edit of the Natural TP
driver.
This way of link-editing only applies if a shared nucleus is created.

17Copyright © Software AG 2002

Installation ProcedureInstalling Natural for DL/I

Step 4: Establish a Natural Environment for DL/I

To verify the installation of NDL with a sample database rather than with existing databases, you perform the
following steps:

1. Allocate VSAM spaces for the sample database
(Job I008, Steps 1500 to 1502).

2. Create the DBDs, PSBs and ACB, and perform the initial load
(Job I053, Steps 1500 to 1560).
Creation of an ACB only applies to VSE/ESA.

3. Execute procedures NATPSB and NATDBD for the sample database
(Job I075, Steps 1500 and 1510).
To enable Natural to access DL/I databases, additional data must be added to the FDIC system file. To do
so, the procedures NATPSB and NATDBD must be executed for each PSB/DBD to be used.

Copyright © Software AG 200218

Installing Natural for DL/IInstallation Procedure

Installation Verification
 To verify the installation of Natural for DL/I

1. Invoke online Natural.
2. Invoke the Natural utility SYSDDM by entering the following command:

SYSDDM
3. On the SYSDDM menu, enter function code "D" to invoke the DL/I Services function.
4. On the resulting screen, enter function code "D" to invoke the NDB Maintenance function.
5. On the resulting screen, enter function code "S" to select the NDB which was created in substep 3 of Step 4.
6. On the resulting screen, enter function code "L" to list the NDB segments.
7. On the resulting screen, enter function code "A" to assign DBID and FNR to the segments.
8. On the same screen, enter function code "G" to generate a DDM from the segment description.
9. Catalog the generated DDM.

10. Only if running under CICS:
Enter "NATPSB ON psbname" in the command line.

11. Edit and run the following program:

 DEFINE DATA LOCAL
 01 COURSE VIEW OF DPQA03-COURSE
 02 COURSEN
 02 TITLE
 02 DESCRIPN

 /* End of DPQA03-COURSE View
 END-DEFINE
 READ (100) COURSE BY COURSEN
 DISPLAY COURSEN TITLE DESCRIPN
 END

19Copyright © Software AG 2002

Installation VerificationInstalling Natural for DL/I

Operation
Natural for DL/I operates as a standard DL/I application.

Prior to running a Natural application, a PSB must be scheduled. The method for scheduling PSBs varies
depending on the actual environment (see the relevant sections under PSB Scheduling), but as for any other DL/I
application, PSB scheduling is a requirement.

This section covers the following topics:

Procedure NATPSB
Procedure NATDBD
Procedure NATUDF
Generation of DDMs from DL/I Segment Types

Procedure NATPSB
Every PSB required by DL/I to accommodate Natural requests must be processed by the Natural batch utility
NDPBNSB0. This utility stores DL/I PSB information, in a form suitable for Natural, on the FDIC system file.
This information is referred to as NSB control block. A batch procedure called NATPSB has been established for
this purpose.

A sample NATPSB job has been included in the source library from the installation tape. The information used
to create NSB control blocks comes from the actual PSBGEN source. It is essential that the same input is used
for the NATPSB procedure as was used for the DL/I PSBGEN. Otherwise, unpredictable results are likely.

The NATPSB job is a three step procedure:

The first step executes the normal DL/I PSBGEN procedure. This step is included to guarantee
compatibility between DL/I and Natural.
The second step performs another assembly and link of the PSBGEN source, this time using macros
supplied by Natural.
The final step executes the Natural batch utility NDPBNSB0, which uses the linked PSB module from the
previous step to create NSB control blocks which are stored on the FDIC system file. NDPBNSB0
dynamically loads the Natural module NDLB0002, which therefore must be present in an allocated load
library.

Copyright © Software AG 200220

OperationOperation

Natural requires one or more PSBs for batch and/or online processing. Depending on application requirements,
the PSB can be switched during a Natural session. Each PSB describes all user views that can be used to access
DL/I databases from Natural programs if this PSB is active. A PSB must contain one or more program
communication blocks (PCBs) for each DBD to be accessed. Since Natural only uses the single positioning
option on PCBs, Natural programs that maintain two or more independent positions in a database require a PCB
(of the appropriate type) for each separate position.

If this requirement is not fulfilled, Natural for DL/I issues the runtime error message:

NAT3789 Active PSB contains too few PCBs for program execution.

The PCB in use must have segment sensitivity and the appropriate PROCOPT parameter specified for Natural, to
be able to perform a segment update.

Nested I/O loops (FIND or READ) in Natural programs frequently require separate positions in the same
database to be maintained. To reduce the number of PCBs needed, as many I/O loops as possible should be
closed before opening subsequent I/O loops.

21Copyright © Software AG 2002

Procedure NATPSBOperation

Consider the following sample DL/I database:

Sample Education Database ED00DBD:

The following Natural program based on the above database requires two PCBs:

READ ED00DBD-COURSE BY COURSENO
 FIND ED00DBD-PREREQ WITH COURSENO-COURSE = COURSENO
 FIND ED00DBD-OFFERING WITH COURSENO-COURSE = COURSENO
 LOOP
 LOOP
LOOP
END

The first PCB is used to maintain position on the COURSE and PREREQ segments. A second PCB is required
for the OFFERING segment since the FIND loop has not been terminated for the PREREQ segment prior to
invoking a FIND on the OFFERING segment. By closing the first FIND loop prior to opening the second one,
this program would only require one PCB.

Copyright © Software AG 200222

OperationProcedure NATPSB

Natural selects the PCB to be used for a database request in the following manner:

1. Natural selects the first PCB in the PSB with the correct DBD name and the appropriate PROCSEQ
parameter (if applicable).

2. Natural then determines if the PCB can be used for the request or if there is a conflict due to current
database positioning.

3. If there was a positioning conflict or the PCB did not contain the correct DBD name or PROCSEQ
parameter, Natural would continue scanning the PSB.

4. If the database search request refers to a secondary index, Natural attempts to use a PCB with the
corresponding PROCSEQ parameter. If there is no PCB of this type in the PSB, Natural tries to use a PCB
without the PROCSEQ parameter. In this case, it is assumed that the INDICES parameter has been coded in
the appropriate SENSEQ statement.

5. If no eligible PCB could be found, an error message would be generated.

In general, PCBs for use by Natural can have different PROCOPT parameters. However, if there are two or more
PCBs in the PSB referring to the same DBD, these PCBs must appear consecutively in the PSB source and they
must specify the same SENSEG statements and same PROCOPT parameters. They can, however, have different
PROCSEQ parameters.

When locating an eligible PCB, Natural disregards the PROCOPT parameter of the PCB. The first free PCB is
selected independently of the PROCOPT parameter, so that if the chosen PCB has a PROCOPT that does not
support the request, an error message that corresponds to a DL/I status code is returned.

Natural assumes that all PCBs with the same DBD name and the same PROCSEQ parameter contain the same
SENSEG statements as the first PCB. If this is not true and a PCB is selected that does not contain a SENSEG
statement for the segment being referenced, an error message that corresponds to a DL/I status code is returned.

The following example PSB and Natural program demonstrate that the sequence of the PCBs, referring to the
same DBD, may affect Natural programs if the PROCOPT= parameters are different:

PCB TYPE=DB,DBDNAME=ED00DBD,PROCOPT=GO,...
SENSEG NAME=COURSE
SENSEG NAME=OFFERING,PARENT=COURSE
PCB TYPE=DB,DBDNAME=ED00DBD,PROCOPT=A,...
SENSEG NAME=COURSE

The following program requires two PCBs: the first PCB is used for the READ loop (which reads all COURSE
segments) and the second nested FIND loop (which finds one offering to a given course); the second PCB is
used for the first FIND loop (which updates a specific COURSE segment). The program does not work if the
order of the two PCBs is reversed.

READ COURSE BY COURSENO
 FIND (1) COURSE WITH COURSENO = ’120’
 UPDATE WITH TITLE = ’Natural’
 LOOP
 FIND (1) OFFERING WITH COURSENO-COURSE = COURSENO (0010)
 DISPLAY COURSENO-COURSE
 LOOP
LOOP
END

23Copyright © Software AG 2002

Procedure NATPSBOperation

The following figure shows the logical connections between DL/I PSBs, PCBs, sensitive segment types and
Natural DDMs:

Natural DDMs which are derived from segment descriptions in the DBD correspond to DL/I segment types.

Since each DL/I application program requires the specification of its sensitive segment types, an appropriate PSB
must be scheduled before Natural program execution. A PSB can be scheduled at the start of a Natural session or
at any time during the session.

If, in the configuration shown in the diagram above, PSB-2 has been scheduled, only the DDMs DDM1 and
DDM2 are accessible to Natural application programs. If an attempt is made to use DDM5, for example, Natural
for DL/I returns the error message:

NAT3768 PCB with requested DBD not found in NSB.

Copyright © Software AG 200224

OperationProcedure NATPSB

Procedure NATDBD
Every DL/I database structure, both physical and logical, which is supposed to be used by Natural, must be
processed by the Natural batch utility NDPBNDB0.

This utility stores DL/I database information on the FDIC system file, in a form suitable for Natural. This
information is referred to as NDB control block. A batch procedure called NATDBD has been established for
this purpose.

A sample NATDBD job has been included in the source library from the installation tape. The information used
to create NDB control blocks comes from the actual DBDGEN source. It is essential that the same input is used
for the NATDBD procedure as was used for the DL/I DBDGEN. Otherwise, unpredictable results are likely.

The NATDBD job is a three step procedure:

The first step executes the normal DL/I DBDGEN procedure. This step is included to guarantee
compatibility between DL/I and Natural.
The second step performs another assembly and link of the DBDGEN source, this time using macros
supplied by Natural.
The final step executes the Natural batch utility NDPBNDB0, which uses the linked DBD module from the
previous step to create NDB control blocks which are stored on the FDIC system file. NDPBNDB0
dynamically loads the Natural module NDLB0001, which therefore must be present in an allocated load
library.

The NATDBD procedure assigns a short name of two bytes to each DL/I field; that is, to each field defined in
the DBD. All field short names are generated in the range from NA to Z9, which means that up to 13 * (26 + 10)
= 468 DL/I fields can be managed per DBD. DL/I short names are generated uniquely within an NDB.

When replacing an NDB, NATDBD reassigns short names in a consistent way; that is, the same short name to
the same field name. In addition, the UDFs are maintained, where the new NDB contains the new DL/I layout
followed by the old UDF layout, which means that UDFs are not deleted by NATDBD. It is the administrator’s
responsibility to edit the segment description after NATDBD has been executed, in order to modify the UDFs
accordingly.

25Copyright © Software AG 2002

Procedure NATDBDOperation

Using Logical Databases with Natural

The following information must be considered when using logical databases with Natural:

Execute the NATDBD procedure for a logical database only after successful execution of the procedure for
the physical databases referred to. In other words, if the input DBD is a "logical" DBD, the NDBs generated
from the "physical" DBDs must already be stored in the Natural FDIC system file to correctly generate the
NDB control blocks related to this segment.
When a segment specifying the SOURCE=keyword is processed by the NATDBD procedure, the related
"physical" DBD must already be stored in the Natural FDIC system file.
If the SOURCE=keyword is specified (in one or more segments) in a "physical" DBD, which means that
one or more logical virtual child segments are involved (recursively or not), the NATDBD procedure run
against this DBD stores the NDB structure on the Natural FDIC system file even if one or more physical
DBDs referred to by the SOURCE=keywords have not already been stored.
In this case, the logical virtual child segments whose source DBD is not yet in the Natural FDIC system file
as well as their descendants are not accessible to the user since Natural has marked these segments as
inhibited. An appropriate Natural error message is issued indicating the name(s) of the related physical
DBD(s) that need to be stored into the Natural system file.
If the logical relationship is the result of a recursive database structure, the NATDBD procedure for the
physical DBD must be run at least twice: the first time, the NDB is stored on the Natural system file with
the undefined segment marked as inhibited; the second time, the reference to the SOURCE segment is
resolved.
If multiple physical databases are logically related, the NATDBD procedure must be run for each of these
physical databases and then rerun for any database that contained logical child segments marked as
inhibited.
If the SOURCE=keyword is specified in a "logical" DBD and one or more source DBDs are not found in
the Natural FDIC system file while running the NATDBD procedure, the NDB structure is not stored and
an appropriate error message is returned.
If an attempt is made to generate a DDM for a segment whose NDB control blocks are not in the Natural
FDIC system file, a Natural error message is returned.

Using Index Databases with Natural

The following information must be considered when using index databases with Natural:

To access a secondary index database as data, the secondary index database must be defined as an
independent physical database to both DL/I and Natural.
The NATDBD procedure need not be executed for primary or secondary index DBDs.

Copyright © Software AG 200226

OperationUsing Logical Databases with Natural

Procedure NATUDF
The DBDGEN source usually does not define all fields within a segment. Additional segment fields called
User-Defined Fields (UDFs) can be entered as part of creating the DDMs. UDFs define the additional data in the
segment that can be referenced by a Natural program. UDFs can be generated online using Predict or the Natural
utility SYSDDM, or they can be generated in batch mode using the NATUDF procedure.

The NATUDF procedure invokes the batch utility NDPBCUDF, which stores segment description layout
information on an FDIC system file.

Important:
Before NDPBCUDF can be executed, the DL/I DBD must have been stored as an NDB on the FDIC system
file, and a DBID and FNR must have been assigned (with Predict or SYSDDM) to each segment concerned.
Otherwise, NDPBCUDF cannot read the segments concerned.

The input for this utility is provided by the segment description read from a work file. This work file contains
segment identification statements and segment field descriptions.

You can format data by using either delimiter mode (IM=D) or forms mode (IM=F); see also the IM profile
parameter in the Natural Parameter Reference documentation. In delimiter mode, the delimiter character can be
used. In forms mode (for example, if input is passed from other programs), input data fields are assumed to be in
contiguous storage and must be filled up to the internally defined full length.

One line is required for the segment identification statement, and two lines are required for each segment field
description.

The section below covers the following topics:

Segment Identification Statement
Segment Field Description

27Copyright © Software AG 2002

Procedure NATUDFOperation

Segment Identification Statement

One line has to be supplied for each segment being defined. The following syntax is used (the parameters must
be specified in the sequence shown below):

FUNC=(function),DBD= dbd-name ,SEGM=segment-name

function Function to be applied to the segment:

ADD to create a new segment layout;

REP to replace an existing segment layout;

MOD to add or modify fields without deleting existing fields not present in the input file;

END to indicate termination of the UDF redefinition.

dbd-name A 1 to 8 character alphanumeric DBD name; that is, the name of the DL/I DBD which owns the
segment to be defined.

segment-name A 1 to 8 character alphanumeric name of the DL/I segment to be defined.

Copyright © Software AG 200228

OperationSegment Identification Statement

Segment Field Description

The segment identification statement has to be followed by at least one segment field description. The following
syntax is used for each field to be defined (the parameters must be specified in the sequence shown below):

FUNC=FLD,NAME=fnam ,TYPE=type ,LEVEL =lev ,LENGTH=lgh ,MAXOCC=moc,VAR=var
FUNC=STR,BEGIN=begin

After each FLD card, a STR card must be coded, except for the last FLD card, which is specified with four dollar
signs ($$$$) in the field name. After this last FLD card, an END card must be coded.

fnam The name of the field being defined. This must be an alphanumeric value of 1 to 19 bytes. The value
"$$$$" closes the definition of the current segment.

type The UDF field format (1 character). The following formats can be specified: A, B, F, P, U, N, S.

lev The field level (1 digit).

lgh The field length (4 digits).

moc The maximum occurrence (3 digits) of the field (only applicable for a multiple-value field or a periodic
group).

var Possible values:

V variable field length

N fixed field length

begin The starting position of the field being redefined. This can be specified either in terms of bytes relative
to the beginning of the segment or as a field name of the DL/I field being redefined. The value must be
alphanumeric and 1 to 19 characters long (32 bytes in forms mode, as the field is 32 characters long in
this mode).

The short name is automatically assigned by the utility in the range from AA to G9, excluding EA to E9. The
range from HA to M9 is reserved for UDFs of logical child segments. Thus, up to 216 fields can be provided as
input, which is the maximum number of UDF fields.

For further information on UDF field parameters, please refer to DL/I Services.

29Copyright © Software AG 2002

Segment Field DescriptionOperation

Delimiter Mode (IM=D) Example:
FUNC=REP,DBD=ED02DBD,SEGM=COURSEFUNC=FLD,NAME=GENG1,TYPE=N,LEVEL=1,LENGTH=5FUNC=STR,BEGIN=11FUNC=FLD,NAME=DUM1,TYPE=A,LEVEL=1,LENGTH=6FUNC=STR,BEGIN=TITLEFUNC=FLD,NAME=DUM2,TYPE=A,LEVEL=1,LENGTH=6FUNC=STR,BEGIN=DESCRIPNFUNC=FLD,NAME=GENG3,LEVEL=1,MAXOCC=2FUNC=STR,BEGIN=GENG1FUNC=FLD,NAME=GRU21,TYPE=N,LEVEL=2,LENGTH=1FUNC=STRFUNC=FLD,NAME=GRU22,TYPE=A,LEVEL=2,LENGTH=2FUNC=STRFUNC=FLD,NAME=GRU23,TYPE=N,LEVEL=2,LENGTH=3FUNC=STRFUNC=FLD,NAME=$$$$FUNC=REP,DBD=ED02DBD,SEGM=COURSEFUNC=FLD,NAME=DUM41,TYPE=B,LEVEL=1,LENGTH=9FUNC=STR,BEGIN=DESCRIPNFUNC=FLD,NAME=DUN2,LEVEL=1,MAXOCC=2FUNC=STR,BEGIN=TITLEFUNC=FLD,NAME=GRU21,TYPE=N,LEVEL=2,LENGTH=1FUNC=STRFUNC=FLD,NAME=GRU22,TYPE=A,LEVEL=2,LENGTH=2FUNC=STRFUNC=FLD,NAME=GRU23,TYPE=N,LEVEL=2,LENGTH=3FUNC=STRFUNC=FLD,NAME=$$$$FUNC=END

Forms Mode (IM=F) Example:

ADDDBD1 SEGM1
FLD 1FIELD-1 000A0012N000
STR
FLD 1FIELD-ANY 000A N000
STRFIELD-1
FLD 2FIELD-ANY2 000A0024N000
STR
FLD $$$$
STR
REPDBD2 SEGM2
FLD 1NEW-FIELD-NAME 000A0012N000
STR
FLD $$$$
END

Copyright © Software AG 200230

OperationSegment Field Description

Sample JCL:

//NATUDF JOB
//NATUDF EXEC PGM=NATBATCH,PARM=’...’
//STEPLIB DD DSN=...
// DD DSN=...
//SYSUDUMP DD DUMMY
//CMPRINT DD SYSOUT=Y
//DDCARD DD DSN=NAT23n.SRCE(ADAPARM),DISP=SHR
//CMSYNIN DD *
LOGON SYSDDM
NDPBCUDF
FUNC=REP,DBD=ED02DBD,SEGM=COURSE
FUNC=FLD,NAME=DUM1,TYPE=A,LEVEL=1,LENGTH=6
FUNC=STR,BEGIN=TITLE
FUNC=FLD,NAME=DUM2,TYPE=A,LEVEL=1,LENGTH=6
FUNC=STR,BEGIN=DESCRIPN
FUNC=FLD,NAME=$$$$
FUNC=END
FIN

Generation of DDMs from DL/I Segment Types
DDMs that represent DL/I segment types are generated from information contained in the NDB and UDF control
blocks. These DDMs contain all fields that have been defined for the segment, both in the NDB and in the UDF.

In addition, the DDMs contain the fields from the ancestor segments that have been defined in the DBDGEN for
these segments. Ancestor segments are defined as segments that form the hierarchical path from the root segment
down to the current segment. Ancestor segment fields that might have been defined in the DBDGEN for a
segment include sequence fields, secondary index fields and search fields.

The DDM for a DL/I segment contains all fields that could be specified in the segment search argument (SSA),
all fields that are available as part of the key feedback area and any segment I/O fields as well. Each DDM,
therefore, contains all the fields that Natural requires to automatically build the concatenated key for the
segment.

Once all fields have been defined for a specific segment DDM, the corresponding Natural DDM can be
generated and cataloged (stored) on the Natural FDIC system file. This is done either with Predict or with the
Natural utility SYSDDM.

If you do not have Predict installed, use the SYSDDM function DL/I Services to generate Natural DDMs from
DL/I segment types. This function is invoked from the main menu of SYSDDM.

31Copyright © Software AG 2002

Generation of DDMs from DL/I Segment TypesOperation

System File Structure
As described in section Accessing DL/I Data, certain information must be stored and maintained on the Natural
FDIC system file in order to access DL/I data. This information describes the database structure, the segment
data and the processing intent of an application. Four elements on the Natural FDIC system file contain this
information. One of these elements, the Natural DDM, is common to all DBMS environments. The remaining
three elements, however, are used only by Natural for DL/I; they are NDB control blocks, NSB control blocks
and UDF control blocks. Therefore, the Natural FDIC system file used by Natural for DL/I contains three
subfiles:

The NDB Subfile
The NSB Subfile
The UDF Subfile

This section also provides information on:

Natural for DL/I Objects
Displaying Keys of UDF Blocks
Displaying the Size of NDL Objects
Displaying NDL Objects
Control Blocks in Separate Buffer Pool
Control Blocks in Buffer Pool Blacklist
Natural for DL/I Objects and Natural DDMs

The NDB Subfile
The NDB subfile contains the NDBs. The NDB, or Natural DBD, control blocks contain most of the information
present in the DL/I DBD, combined with additional data used by Natural, such as the file number (FNR) and
database identification (DBID) of the segment, and short names for fields defined in the DBD. The NDB control
blocks are created and stored on the Natural FDIC system file by the NATDBD procedure.

An NDB consists of the following fields:

Field Description

ND DBD name (8 characters) combined with sequence number (1 byte, "binary").

NC The first two bytes contain the number of NZ fields in the record times 20. The second two bytes contain
the total number of NZ fields in the NDB multiplied by 20.

NZ NDB data.

Copyright © Software AG 200232

System File StructureSystem File Structure

The NSB Subfile
The NSB subfile contains the NSBs. The NSB, or Natural PSB, control blocks contain most of the information
present in the DL/I PSB. These control blocks are created and stored on the Natural FDIC system file by the
NATPSB procedure.

An NSB consists of the following fields:

Field Description

NP PSB name (8 characters) combined with sequence number (1 byte, "binary").

NC The first two bytes contain the number of NZ fields in the record times 20. The second two bytes contain
the total number of NZ fields in the NSB multiplied by 20.

NZ NSB data.

The UDF Subfile
The UDF subfile contains the UDFs. The UDF, or User-Defined Field, control blocks contain information on
segment fields which have been specified by the user, either through the online DL/I Services function of the
SYSDDM utility, the NATUDF procedure, or by using Predict.

The fields are as follows:

Field Description

NS Database identification (1 byte, "binary"), file number (1 byte, "binary") and sequence number (1 byte,
"binary"). The DBID and FNR are those of the segment being described by this record.

NC The first two bytes contain the number of NZ fields in the record times 20. The second two bytes contain
the total number of NZ fields in the UDF multiplied by 20.

NZ Field description as specified by the user using Predict, the "EDIT segment layout" facility of SYSDDM
or the procedure NATUDF.

NW The long field name.

33Copyright © Software AG 2002

The NSB SubfileSystem File Structure

Natural for DL/I Objects
Natural for DL/I objects are created during execution of the NATPSB procedure (NSB), during execution of the
NATDBD procedure (NDB)), or when assigning DBID/FNR to a segment type (UDF). Consequently, at least
one UDF block for each segment type with an assigned DBID/FNR is always present on FDIC - whether
User-Defined Fields (UDF fields) have been defined by the user or not.

When displaying type definitions in SYSDDM, the NDB and its related UDF are combined automatically. The
only way to display an UDF separately (for debugging purposes) is by using NDLBLOCK.

Displaying Keys of UDF Blocks
The utility program NDLULIST, cataloged in the library SYSDDM, is provided for listing the keys of all UDF
blocks and for checking for duplicates.

For each duplicate found the following warning is issued:

More than one record with same DBID/FNR.

Displaying the Size of NDL Objects
The following utility programs, cataloged in library SYSDDM, are provided for displaying the sizes of the
various NDL objects:

NDLSIZED displays the sizes of all NDBs stored on FDIC.
NDLSIZEP displays the sizes of all NSBs stored on FDIC.
NDLSIZEU displays the sizes of all UDFs stored on FDIC.

Displaying NDL Objects
The utility program NDLBLOCK, cataloged in library SYSDDM, is provided for displaying the NDBs, NSBs
and UDFs stored on FDIC. The utility displays the objects in hexadecimal format.

Copyright © Software AG 200234

System File StructureNatural for DL/I Objects

Control Blocks in Separate Buffer Pool
The Natural for DL/I control blocks NDB, NSB and UDF are read from FDIC and loaded into a buffer pool -
resident or not, depending on the NDLPARM parameters RESINDB, RESINSB, and RESIUDF. This allows a
given object to be shared by several users.

By means of the NTBPI macro (as described in Parameter Modules in the Natural Parameter Reference
documentation) it is possible to have a buffer pool for NDB, NSB and UDF control blocks which is different
from the buffer pool for Natural programs, thus allowing for better isolation between the different Natural
objects.

If a separate buffer pool is allocated, Natural for DL/I locates its control blocks in this buffer pool. Otherwise,
they are located in the Natural buffer pool.

The "Individual Object Statistics" function of the SYSBPM utility displays the NDB, NSB and UDF control
blocks kept in the buffer pool as follows:

 Library DBID FNR

NDB SYSDLIND 255 253

NSB SYSDLINS 255 253

UDF Ummmnnn 255 253

Note:
The library names of NDB and NSB are fixed internal names and are not related to any Natural library.

The DBID/FNR values are fixed internal values and are not related to any Natural system file.

"mmm" is the DBID of the corresponding segment, "nnn" is the FNR of the corresponding segment.

The "Display Object Hexadecimally" function of the SYSBPM utility also allows you to display Natural for
DL/I objects. This function might be useful when in doubt if the expected object has been read from FDIC, or if
the object has been read from the expected FDIC (test/production).

35Copyright © Software AG 2002

Control Blocks in Separate Buffer PoolSystem File Structure

Control Blocks in Buffer Pool Blacklist
The Natural for DL/I control blocks NDB, NSB and UDF can be added to the buffer pool blacklist.

This is done by the "Blacklist Maintenance" function of the SYSBPM utility.

As "Library" you enter "SYSDLIND" for NDBs, "SYSDLINP" for NSBs, and "SYSDLINS" for UDFs.

As "Object" you enter the NDB name for NDBs, the NSB name for NSBs, and Ummmnnn for UDFs where
mmm/nnn are the DBID/FNR of the corresponding segment.

This feature allows you to modify NDBs, NSBs or UDFs without causing unpredictable results for active users.

If an attempt is made to load a locked object into the buffer pool, Natural for DL/I will issue error message
NAT3935.

Natural for DL/I Objects and Natural DDMs
When referencing a DDM in a Natural program, Natural translates the DDM name into the corresponding
DBID/FNR pair. If this DBID identifies the DDM as a DL/I DDM (by means of the NTDB macro), the Adabas
control block is passed to Natural for DL/I for further processing.

Natural for DL/I takes DBID from the control block and tries to locate an UDF with this DBID/FNR in the
buffer pool. If it is not found there, it is read from FDIC and loaded into the buffer pool.

The UDF contains the name of the related NDB in its header. Using this name, Natural for DL/I tries to locate
the NDB in the buffer pool. If it is not found there, it is read from FDIC and loaded into the buffer pool.

The segment description including all DL/I fields is part of the NDB.

From this it is clear that:

the NDB/UDF is required during runtime,
the relation between the Natural program and the related NDB is established by means of DBID/FNR only.

This implies that the DBA has to ensure that DDMs and NDBs are always kept in synchronization. For example,
it is not sufficient to transfer only the Natural programs from test to production.

Copyright © Software AG 200236

System File StructureControl Blocks in Buffer Pool Blacklist

Natural Batch Utilities
This section covers the following topics:

Transfer of NDBs/NSBs/UDFs from one System File to Another
Utility NDUDFGEN for Natural Data Areas

Transfer of NDBs/NSBs/UDFs from one System File to
Another

Unloading the NDBs, NSBs and UDFs
Loading NDBs, NSBs and UDFs
Selecting NDBs, NSBs and UDFs from a Dataset

The transfer of NDBs, NSBs and UDFs from one FDIC system file to another is performed either online using
the utility SYSMAIN (as described in the Natural Utilities for Mainframes documentation) or in two batch steps,
using two Natural batch utilities provided for this purpose:

With the ULDDLI unload utility, the NDBs, NSBs and UDFs are transferred from one FDIC system file to
a sequential work file.
With the INPLDLI load utility, the NDBs, NSBs and UDFs are transferred from the sequential work file to
another FDIC system file.

Both programs, ULDDLI and INPLDLI, are contained in the library SYSDDM.

37Copyright © Software AG 2002

Natural Batch UtilitiesNatural Batch Utilities

Unloading the NDBs, NSBs and UDFs

The utility ULDDLI is used to unload NDBs, NSBs and UDFs from an FDIC system file to a sequential work
file.

ULDDLI requires the following input:

the specification of the FDIC system file to be unloaded (either in the NATPARM module or dynamically)
and
one or more parameter lines containing the following:

Function code (A1); the following function codes can be specified:

A All NSBs, NDBs and UDFs are unloaded.

D All NDBs with valid object names and their UDFs are unloaded. If no object names are
specified, all NDBs and their UDFs are unloaded.

P All NSBs with valid object names are unloaded. If no object names are specified, all NSBs are
unloaded.

U All UDFs with valid object names are unloaded. If no object names are specified, all UDFs are
unloaded.

. Terminate ULDDLI; at least one parameter card with function code "." is required.

Object name (A8); 0 - 6 occurrences.
Note:
With UDFs, the object name must be in the form "nnn**nnn"; that is, a 3-digit database ID, followed
by 2 asterisks, followed by a 3-digit file number.

Work files: CMWKF01 DD card must be provided with:

DCB=(RECFM=VB,LRECL=4624,BLKSIZE=4628)

When ULDDLI is executed, the specified NDBs, NSBs and UDFs are written from the FDIC system file to the
CMWKF01 dataset.

Note:
DL/I fields of a segment are part of the NDB block and not of the UDF block, which means that you must still
transfer the entire NDB block if you have modified a DL/I field in a segment.

Example 1 - Unload the NDBs TESTDB1 and TESTDB2:

 LOGON SYSDDM
 ULDDLI D TESTDB1 TESTDB2
 .

Example 2 - Unload all UDF Blocks:

 LOGON SYSDDM
 ULDDLI U
 .

Example 3 - Unload UDF Blocks with DBID 10/FNR 150 and DBID 246/FNR 3:

 LOGON SYSDDM
 ULDDLI U 010**150 246**003
 .

Copyright © Software AG 200238

Natural Batch UtilitiesUnloading the NDBs, NSBs and UDFs

Loading NDBs, NSBs and UDFs

The utility INPLDLI is used to load NDBs, NSBs and UDFs - previously unloaded with ULDDLI - from the
work file to an FDIC system file.

INPLDLI requires the following input:

the specification of the FDIC system file into which the NDBs, NSBs and UDFs are to be loaded (either in
the NATPARM module or dynamically);
(optionally) the parameter "DEL=Y":
If you specify "DEL=Y", all existing NDBs and UDFs found on the FDIC system file are first deleted. The
ones contained on the input work file are added to the file. NSB definitions contained on the work file
replace any identically named NSBs on the FDIC system file.
If you do not specify "DEL=Y", existing identically named NDBs and NSBs are not replaced. Existing
UDFs which have been allocated identical DBID/FNR combinations are not replaced either. Non-existent
definitions are added. If you do not specify "DEL=Y", it may occur that an NDB is loaded but all or some
of its segments (UDFs) are not, or that segments (UDFs) are loaded without the corresponding NDB being
loaded.
(optionally) the parameter "REP=Y": If you specify "REP=Y", NDBs, NSBs and UDFs contained on the
work file replace any identically named NDBs, NSBs and UDFs on the FDIC system file.

"DEL=Y" and "REP=Y" are mutually exclusive. If neither "DEL=Y" nor "REP=Y" is specified, existing NDBs,
NSBs and UDFs are neither deleted nor replaced.

Work files: CMWKF01 DD card must be assigned to the work file which was created by the utility program
ULDDLI.

When INPLDLI is executed, the NDBs, NSBs and UDFs are loaded from the work file into the specified FDIC
system file, depending on whether they already exist and on whether "DEL=Y" was specified.

Example:

 LOGON SYSDDM
 INPLDLI REP=Y

39Copyright © Software AG 2002

Loading NDBs, NSBs and UDFsNatural Batch Utilities

Selecting NDBs, NSBs and UDFs from a Dataset

The utility SELDLI allows you to select NDL objects (NDBs, NSBs, UDFs) from a dataset created by the
ULDDLI utility. The output of SELDLI can be used as input for INPLDLI. Since INPLDLI does not allow to
select objects from a dataset created by ULDDLI, you can use SELDLI to perform this function on desired
objects prior to running INPLDLI.

SELDLI can, therefore, be used for backup/recovery or transfer of selected objects from test to production.

SELDLI also supports a SCAN (command SCN) feature that will list all of the objects on the input dataset
without selecting any for output.

SELDLI can be used in batch mode only.

SELDLI requires the following input:

the specification of the output dataset CMWKF01 from ULDDLI
up to 30 parameter lines containing the following:

Object type (A3); the following types can be specified:
NSB - Select specified NSB
NDB - Select specified NDB
NDU - Select specified NDB and related UDF
UDF - Select specified UDF
SCN - List input dataset CMWKF01

terminate SELDLI
Object name (A8); 1 occurrence

Note:
With NDB/NSB, a wildcard (*) can be specified at the end of the name to select a range of names.

With UDFs, the object name must be in the form "nnn**nnn"; that is, a 3-digit database ID, followed by 2
asterisks, followed by a 3-digit file number.

SELDLI provides the following output:

Dataset containing selected objects to be used as input to INPLDLI. It is specified with DDNAME
"CMWKF02".

When SELDLI is executed, the specified NDBs, NSBs and UDFs are copied from CMWKF01 to CMWKF02.

Copyright © Software AG 200240

Natural Batch UtilitiesSelecting NDBs, NSBs and UDFs from a Dataset

Example 1 - Select all NDBs:

 LOGON SYSDDM
 SELDLI
 NDB,*
 .
 FIN

Example 2 - Select NSB "ORDPSB" and UDF for DBID 151, FNR 3:

 LOGON SYSDDM
 SELDLI
 NSB,ORDPSB
 UDF,151**003
 .
 FIN

Example 3 - Select NDB "CUSTDBD" and its related UDFs:

 LOGON SYSDDM
 SELDLI
 NSB,ORDPSB
 NDU,CUSTDBD
 .
 FIN

Example 4 - List all objects on the input dataset:

 LOGON SYSDDM
 SELDLI
 SCN
 FIN

41Copyright © Software AG 2002

Selecting NDBs, NSBs and UDFs from a DatasetNatural Batch Utilities

Utility NDUDFGEN for Natural Data Areas
The batch utility NDUDFGEN can be used to generate Natural data areas.

Input is provided by a UDF definition read from a work file.

Two kinds of data areas can be generated:

a Natural view,
a data structure (local data area).

A view in a local data area is generated from all fields contained in the input work file. The utility normalizes the
data to the requirements of a view according to the Natural syntax. The field lengths are adapted to Natural field
lengths, multiple-value fields and periodic groups are generated from record data structures. Arrays are generated
by NDUDFGEN with the maximum length allowed by Natural. Field definitions are collected into a redefinition
and the redefined field is generated according to the length of the individual fields collected. The generated field
can then be used in the segment description as UDF; this means that not all UDFs need to be defined in the
segment description, but only the generated fields.

A data structure as local data area is generated of all input fields. A level increment value can be specified for the
fields. No other modifications to the input file data are permitted, so that the data are generated as specified in
the input file.

Input for NDUDFGEN

The input layout is similar to the one for the NDPBCUDF utility.

The first card is the definition card; it contains the definition which is valid for all of the UDF definitions.

The "FLD" cards contain the actual field definitions and are separated from each other by "STR" cards.

The "END" card indicates the end of the field definitions. The input is required in forms mode (IM=F) as
follows:

Definition
Card

Explanation

Bytes 1 - 3 The first 3 bytes are not used.

Bytes 4 - 11 These 8 bytes contain the DBD name.

Bytes 12 - 19 These 8 bytes contain the segment name.

Bytes 20 - 27 These 8 bytes contain a prefix (generated for fields).

Bytes 28 - 30 These 3 bytes contain the maximum occurrence (default is 191).

Byte 31 This byte contains either "S" if a data structure is to be generated or "V" if a view is to be
generated.

Byte 32 This byte contains the level increment.

Copyright © Software AG 200242

Natural Batch UtilitiesUtility NDUDFGEN for Natural Data Areas

Field Card Explanation

Bytes 1 - 3 The first 3 bytes contain "FLD".

Bytes 4 - 19 These 16 bytes are not used.

Byte 20 This byte contains the field level.

Bytes 21 - 39 These 19 bytes contain the name of the field being defined. This must be an alphanumeric value.

Bytes 40 - 42 These 3 bytes are not used.

Byte 43 This byte contains the format of the field.

Bytes 44 - 47 These 4 bytes contain the byte length of the field.

Byte 48 This byte is not used.

Byte 49 - 52 This byte contains the length as required by Natural (if this length is specified, the byte length is
ignored).

Byte 53 - 57 These 4 bytes contain the maximum size of the 1st dimension of an array.

Byte 58 - 62 These 4 bytes contain the maximum size of the 2nd dimension of an array.

Byte 63 - 66 These 4 bytes contain the maximum size of the 3rd dimension of an array.

43Copyright © Software AG 2002

Input for NDUDFGENNatural Batch Utilities

Example 1 - View Generation:

 DBDNAME SEGMENT PREFIX 191V
 FLD 1VAR1 000A0745
 STR
 FLD 1GROUP 000A0000N0000000200020000
 STR
 FLD 2VAR2 000A0006N00060005
 STR
 FLD 2VAR3 000A0030
 STR
 END

The above input generates the following view:

 13:38:41 ***** E D I T DATA ***** 89-05-03
 Library: XYZ1 Name: LOCAL DBID: 10 FNR: 5
 Command: > +
 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ------------------------------------
 1 VAR1 A 149 (5)
 1 GROUP (4)
 2 VAR2 A 6 (5)
 2 VAR3 A 30

Example 2 - Structure Generation:

 DBDNAME SEGMENT PREFIX 191S
 FLD 1VAR1 000A0745
 STR
 FLD 1GROUP 000A0000N0000000200020000
 STR
 FLD 2VAR2 000A0006N00060005
 STR
 FLD 2VAR3 000A0030
 STR
 END

The above input generates the following data structure:

 13:41:20 ***** E D I T DATA ***** 89-05-03
 Library: XYZ1 Name: LOCAL DBID: 10 FNR: 5
 Command: > +
 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ------------------------------------
 V 1 DBDNAME-SEGMENT-VIEW DBDNAME-SEGMENT
 M 2 VAR1 A 149 (5)
 P 2 GROUP (4)
 3 PREFIX-1 A 60 /*PREFIX-1
 R 3 PREFIX-1
 4 VAR2 A 6 (5)
 4 VAR3 A 30

Copyright © Software AG 200244

Natural Batch UtilitiesInput for NDUDFGEN

Execution
This section covers the following topics:

PSB Scheduling
CALLNAT Interface
Support of IMS-Specific Features
Fast Path Support
Support of GSAM
Processing in CICS Pseudo-Conversational Mode under IMS/TM

PSB Scheduling
In all environments, Natural must know the name of the scheduled PSB, not only the address of the PCB list. In
the online environments, the application developer must have the ability to change the scheduled PSB during a
Natural session. This is accomplished by the Natural command NATPSB (in batch or CICS environments) or by
calling CMDEFSWX/CMDIRSWX (in IMS/TM environments).

The NATPSB Command

PSB scheduling in Natural depends upon the actual operating environment. Therefore, this section is further
subdivided into:

PSB Scheduling in a Batch Environment
PSB Scheduling in a CICS Environment
PSB Scheduling in an IMS/TM Environment

The NATPSB Command

The NATPSB command handles PSB scheduling status and can be invoked with one of the following three
options:

Option Description

INQ Performs an inquiry on PSB scheduling status.

ON psbnameIssues a PSB schedule of the PSB psbname.

OFF Issues a syncpoint to commit all updates and terminate the PSB.

Note:
The NATPSB INQ command is valid in an IMS/TM environment, too.

The following command, for example, issues a PSB schedule of ED00PSB:

NATPSB ON ED00PSB

45Copyright © Software AG 2002

ExecutionExecution

A PSB scheduling operation is allowed only if there is no active PSB. If a PSB is active and another PSB is to be
scheduled, the "ON" request for this new PSB must be preceded by an "OFF" request. Otherwise, the following
message is issued:

NAT3900 PSB ... scheduled, but PSB ... already active

Since NATPSB is actually a Natural program, it can also be invoked with a FETCH or FETCH RETURN
statement. The options described above should then be passed in the FETCH statement as two parameters. The
first parameter would be an alphanumeric field of three bytes for "INQ", "ON" or "OFF". If the first parameter is
"ON", the second parameter must also be passed. It is an alphanumeric field of eight bytes and contains the name
of the PSB to be scheduled.

Execution time errors of NATPSB can be intercepted by an ON ERROR statement. The error messages from
NAT3900 to NAT3903 and from NAT3817 to NAT3820 are generated by NATPSB.

Example:

FETCH RETURN ’NATPSB’ ’ON’ ’PBNDL01’
ON ERROR
 IF *ERROR = 3900 /* PSB already scheduled
 STACK TOP COMMAND ’NATPSB’ ’ON’ PBNDL01’
 STACK TOP COMMAND ’NATPSB’ ’OFF’
 STOP
 END-IF
END-ERROR
END

PSB Scheduling in a Batch Environment

To execute a batch program that accesses a DL/I database, it is necessary to use the DL/I batch procedure which
executes an application program under DL/I control. Therefore in the JCL/JCS used to execute Natural batch
accessing DL/I databases, the first program in the step is a DL/I system program (DFSRRC00 for OS/390,
DLZRRC00 for VSE/ESA).

PSB scheduling is performed by DL/I before control is passed to Natural. Since Natural requires the name of the
scheduled PSB, it is necessary to invoke the Natural PSB scheduling program NATPSB before executing a
Natural application program. This can be achieved by specifying the command NATPSB ON psbname as the
first command in the batch input stream to Natural.

Batch Execution under OS/390

Under OS/390, the DL/I region controller program (DFSRRC00) invokes the NDLSINIB bootstrap module for
Natural for DL/I by specifying MBR=NDLSINIB in the PARM field of the EXEC card. NDLSINIB reads two
statements from the NDINPUT DD card:

Statement 1 contains the name of the Natural module to be executed.
Statement 2 contains the dynamic Natural parameters.

Before executing the user program, the command "NATPSB ON psbname" must be specified in the input stream
to pass the name of the current PSB to Natural.

Copyright © Software AG 200246

ExecutionPSB Scheduling in a Batch Environment

Example 1 - OS/390 with Adabas System File:

// EXEC DLIBATCH,PSB=psbname,MBR=NDLSINIB
//G.STEPLIB DD ... Steplibs
//G.NDINPUT DD * Input for NDLSINIB
natbatch Natural load module name
STACK=(LOGON user),DU=ON Any Natural parameters
//DDCARD DD * Primary input file
ADARUN MODE=MULTI,PR=USER ADARUN cards
//G.CMSYNIN DD * Primary input file
NATPSB ON psbname Mandatory Natural PSB scheduling
pgmname Natural user program name
/* End of Natural commands

Example 2 - OS/390 with VSAM System File:

// EXEC DLIBATCH,PSB=psbname,MBR=NDLSINIB
//G.STEPLIB DD ... Steplibs
//G.NDINPUT DD * Input for NDLSINIB
natbatch Natural load module name
STACK=(LOGON user),DU=ON Any Natural parameters
//G.CMSYNIN DD * Primary input file
NATPSB ON psbname Mandatory Natural PSB scheduling
pgmname Natural user program name
/* End of Natural commands

In both examples, natbatch is assumed to be the load module produced by the respective link-edit procedure.

Batch Execution under VSE/ESA

Under VSE/ESA, the DL/I region controller program (DLZRRC00) invokes the NDLSINID bootstrap module
for Natural for DL/I.

The SYSIPT cards are as follows:

DL/I control statements:
DLI,NDLSINID , psbname
natbatch
where:

DLI is a parameter for DLZRRC00,
NDLSINID is the name of the bootstrap module,
psbname is the name of the PSB,
natbatch is the name of the Batch Natural nucleus;

dynamic parameters to be passed to Natural;
ADARUN statements (only if Adabas system file is being used);
Natural input cards.

A "/*" delimiter card is required before the ADARUN statements (if present) and before the Natural dynamic
parameters and input cards.

Before executing the user program, the "NATPSB ON psbname" command must be specified in the input stream
to pass the name of the current PSB to Natural.

Example 1 - VSE/ESA with Adabas System File:

47Copyright © Software AG 2002

PSB Scheduling in a Batch EnvironmentExecution

 // EXEC DLZRRC00
DLI,NDLSINID,psbname DL/I control statements
natbatch Batch Natural nucleus name
/*
STACK=(LOGON user),DU=ON Any Natural parameters
/* End of Natural parameters
ADARUN MODE=MULTI,PR=USER ADARUN cards
/* End of ADARUN cards
NATPSB ON psbname Mandatory Natural PSB scheduling
pgmname Natural user program name
/* End of Natural commands

Example 2 - VSE/ESA with VSAM System File:

// EXEC DLZRRC00
DLI,NDLSINID,psbname DL/I control statements
natbatch Batch Natural nucleus name
/*
STACK=(LOGON user),DU=ON Any Natural parameters
/* End of Natural parameters
NATPSB ON psbname Mandatory Natural PSB scheduling
pgmname Natural user program name
/* End of Natural commands

In both examples, natbatch is assumed to be the load module produced by the respective link-edit procedure.

Copyright © Software AG 200248

ExecutionPSB Scheduling in a Batch Environment

PSB Scheduling in a CICS Environment

Under CICS, the PSB must be scheduled using the NATPSB command, which actually invokes the appropriate
scheduling or termination calls.

The active PSB can be changed dynamically during the Natural session using the NATPSB command.
Therefore, more than one PSB can be used during a Natural session. Only one PSB, however, can be active for a
CICS task at a time.

The NATPSB command can be entered in the Natural command line or passed to Natural dynamically with the
Natural STACK statement when starting a Natural session.

Examples:

MOVE ’STACK=(NATPSB ON ED00PSB)’
 TO DYNAMIC-PARM-KEYWORD-LIST.
EXEC CICS
 XCTL PROGRAM(’NAT31n’)
END-EXEC.

This example taken from a COBOL/CICS program assumes that NAT31n is the value supplied for the
PROGRAM keyword in the CICS PPT.

Another possibility is to assign NATPSB commands to one or more PF keys when starting a Natural session as
illustrated in the following example:

NATD STACK=(KEY PF1 = ED00PSB)

This example assumes that "NATD" is the value supplied for the TRANSID keyword in the CICS PCT.
ED00PSB is the following Natural program (cataloged in the library SYSTEM):

STACK TOP COMMAND ’NATPSB ON ED00PSB’
STACK TOP COMMAND ’NATPSB OFF’
END

Whenever PF1 is pressed, the commands "NATPSB OFF" and "NATPSB ON ED00PSB" are executed.

PSB Scheduling in an IMS/TM Environment

Under IMS/TM, Natural for DL/I runs as a conversational transaction. It has the ability to perform direct or
deferred message switching. This means that several different Natural transactions and PSBs can be invoked
during a single Natural session. It is also possible to invoke multiple PSBs and provide the user with access to
databases defined in different PSBs. This is accomplished by calling CMDEFSWX or CMDIRSWX.

Under IMS/TM, PSB scheduling is performed by the IMS Control Region before control is passed to the Natural
transaction running as an MPP (Message Processing Program) or BMP (Batch Message Processing). As in the
batch environment, Natural needs to know the name of the scheduled PSB. This is accomplished internally at
Natural session start by the driver which stores the pointer to the PCB address list and the name of the PSB into
IOCB fields. The NATPSB INQ command can be issued in this environment but the NATPSB ON/OFF
commands cannot.

49Copyright © Software AG 2002

PSB Scheduling in a CICS EnvironmentExecution

CALLNAT Interface
The Natural subprograms NDLPCBAD and NDLPSBSC are provided, which can be invoked with a CALLNAT
statement from within a Natural program.

See the following sections:

The NDLPCBAD Subprogram
The NDLPSBSC Subprogram

The NDLPCBAD Subprogram

The Natural subprogram NDLPCBAD provides the calling Natural program with the name of the currently
scheduled PSB and the pointer to the PCB address list.

Example:

DEFINE DATA LOCAL
01 PSBNAME (A8)
01 PCBADDR (B4)
END-DEFINE
CALLNAT ’NDLPCBAD’ PSBNAME PCBADDR
DISPLAY PSBNAME PCBADDR
END

This pointer can then be used by non-Natural programs to obtain the individual PCB addresses and to establish
addressability to the PCBs. For example, move these addresses to the BLL cells (COBOL/VS) or use the SET
ADDRESS instruction (COBOL II).

Copyright © Software AG 200250

ExecutionCALLNAT Interface

The NDLPSBSC Subprogram

The Natural subprogram NDLPSBSC allows for scheduling a PSB in CICS or batch environments. It performs
the same functions as the NATPSB command.

Using CALLNAT ’NDLPSBSC’ (instead of FETCH RETURN ’NATPSB’) avoids the NAT1108 error message,
which is issued if a PSB is scheduled in an INPUT loop as follows:

INPUT ...
FETCH RETURN ’NATPSB’ ’ON’ ’psbname’
REINPUT ... /* returns NAT1108

Example:

DEFINE DATA LOCAL
01 COMMAND (A3)
* ’ON’
* ’OFF’
* ’INQ’
01 PSBNAME (A8)
01 RETCODE (B1)
* 01: Command invalid
* 02: PSB name missing
* 03: PSB psbname active
* 04: PSB psbname not active
* 05: Not used
* 06: No PSB active
END-DEFINE
MOVE ’ON’ TO COMMAND
MOVE ’psbname’TO PSBNAME
CALLNAT ’NDLPSBSC’ COMMAND PSBNAME RETCODE
DISPLAY PSBNAME RETCODE
END

Under IMS/TM, NDLPSBSC can only be used with parameter ’INQ’, because PSB scheduling is performed by
the IMS control region before control is passed to Natural.

51Copyright © Software AG 2002

The NDLPSBSC SubprogramExecution

Support of IMS-Specific Features
This section covers the following topics:

Symbolic Checkpoint/Restart Functions - CHKP, XRST
The INIT Call to Enable Data Availability Status Codes

Symbolic Checkpoint/Restart Functions - CHKP, XRST

A Natural program can make use of the IMS/TM symbolic checkpoint and restart facilities by using the
statements GET TRANSACTION DATA and END TRANSACTION.

The executing program can checkpoint user data on the IMS system log datasets by supplying an 8-byte
checkpoint ID as the first operand in the END TRANSACTION statement and by specifying the areas to be
checkpointed as additional operands.

To ensure that the checkpoints are written to the IMS log dataset, the Natural profile parameter ETDB (see the
Natural Parameter Reference documentation) must be specified, and the database specified with the ETDB
parameter must be a DL/I database.

If no operands are specified with the END TRANSACTION statement, Natural uses "NATDLICK" as the
default checkpoint ID.

This checkpoint data are retrieved by executing the GET TRANSACTION DATA statement. The first operand
of this statement must also be an 8-byte checkpoint ID. The remaining operands must be listed in the same
sequence, length and format as in the corresponding END TRANSACTION statement.

Example:

RESET CKPID(A8) KEY(A10) AREA1(A20) AREA2(N6) AREA3(A120)
GET TRANSACTION DATA CKPID KEY AREA1 AREA2 AREA3
IF CKPID NE ’ ’ /* checkpoint restart
 MOVE KEY TO START-KEY(A10)
ELSE
 RESET START-KEY /* normal restart
MOVE *PROGRAM-ID TO CKPID
 :
READ DLI-DB BY XKEY> START-KEY
 :
 UPDATE
 :
 END TRANSACTION CKPID XKEY AREA1 AREA2 AREA3
 :
END

Copyright © Software AG 200252

ExecutionSupport of IMS-Specific Features

Normal Restart: Simply run the job. The checkpoint ID parameter in the program’s GET TRANSACTION
DATA statement is set to blanks by the DL/I call handler NDLSIOBA.

Checkpoint Restart:To restart after an abnormal termination, specify one of the following checkpoint IDs in
the PARM field of the EXEC statement in your program’s JCL:

CKPTID=LAST to restore data areas written to the log by the job at the last
successful checkpoint; or

CKPTID=ccccccccto restore data areas written with checkpoint ID cccccccc.

These are the usual IMS/TM restart procedures. Each checkpoint ID used in an END TRANSACTION statement
is displayed in the job output once the extended checkpoint has been successfully executed by IMS.

The checkpoint ID parameter of the program’s GET TRANSACTION DATA statement is set to the actual
checkpoint ID used by IMS.

The data areas are restored into the areas you specify in your GET TRANSACTION DATA statement.

Ensure that the //IMSLOGR DD statement specifies the correct IMS log dataset.

When Natural is started in a BMP region, the initialization routine issues an XRST call, to ensure that symbolic
checkpointing is available. This is done whether the Natural user programs to be executed make use of IMS
symbolic checkpoint logic or not. If the XRST was unsuccessful, Natural returns the following error message:

NAT3959 XRST call failed with DL/I status code xx

When a GET TRANSACTION DATA statement is directed to the Natural call handler and the initial XRST call
has been flagged as successfully executed, the restart checkpoint ID and contents of this buffer are copied into
the program’s user fields.

When an END TRANSACTION statement is directed to the Natural call handler, the user fields to be
checkpointed are copied into the buffer before a symbolic checkpoint call (CKPT) is issued.

If the database specified with the profile parameter ETDB (see the Natural Parameter Reference documentation)
is not the same as the database affected by the transaction, the first operand of the END TRANSACTION
statement will be used as checkpoint ID for the ETDB database, while "NATDLICK" will be used as checkpoint
ID for the other database not specified with the ETDB parameter.

The total area to be checkpointed must not exceed 1992 bytes.

53Copyright © Software AG 2002

Symbolic Checkpoint/Restart Functions - CHKP, XRSTExecution

The INIT Call to Enable Data Availability Status Codes

If the INITCAL parameter of NDLPARM is set to "YES", Natural issues an INIT call during session
initialization and during each MPP transaction start. The character string in the I/O area is "STATUS
GROUPA". This informs IMS that Natural is prepared to accept status codes regarding data unavailability. IMS
returns status codes BA or BB when the DL/I call requires access to unavailable data (for example, if the
accessed database has been stopped).

The corresponding error messages of Natural for DL/I are:

NAT3897 DL/I status code ’BA’
NAT3898 DL/I status code ’BB’

For compatibility reasons, the default setting of INITCAL is "NO".

The INIT call is issued only if Natural runs in a BMP or MPP region.

Fast Path Support
Natural supports Fast Path databases.

Fast Path database types include Main Storage Databases (MSDB) and Data Entry Databases (DEDB).

MSDB:
MSDBs have root only segments that are fixed-length. There are two types of MSDBs: terminal-related and
non-terminal-related.
To read segments in an MSDB GU and GN are used.
To update segments in an MSDB REPL, DLET, ISRT, and FLD are used.
DEDB:
DEDBs use the design concept that database content can be physically partitioned by ranges of root keys or
by groupings produced by a randomizing algorithm.

As a basic requirement, the non-conversational NATIMS driver must be used. This is because Fast Path
programs cannot be conversational programs, i.e., they cannot use an SPA.

For DEDB databases, no special processing is required by Natural for DL/I.

For MSDB databases, the (one and only) SSA is built without command codes because DL/I does not allow for it
(not even the null command code must be used in case of MSDB databases).

When updating segments in an MSDB database, Natural for DL/I uses the REPL call (rather than the FLD call)
because the UPDATE statement of the Natural language does not provide a search condition that indicates which
segments must be updated (searched update).

Copyright © Software AG 200254

ExecutionFast Path Support

Support of GSAM
Natural for DL/I supports the Generalized Sequential Access Method (GSAM), with which a sequential dataset
can be handled as a sequential non-hierarchic database by IMS.

Although GSAM databases have no segments, keys or parentage, they are handled internally by Natural as
root-only databases with fixed or variable-length segment types. Thus, it is possible to use DDMs instead of
work files for GSAM record types.

For variable-length GSAM records, Natural maintains the record length; you need not reserve a field for the
record length in the DDM.

A FIND or READ statement generates a GN (get next) call sequence for GSAM. Due to GSAM restrictions,
UPDATE and DELETE statements are not allowed. Due to GSAM restrictions, a STORE statement must insert
records at the end of the database.

IMS repositions GSAM databases for sequential processing, which means that the position need not be
re-established by the application program after checkpoint calls. Therefore, Natural performs no repositioning
after checkpoint calls in the case of PCBs for GSAM.

In order to use the extended restart feature of IMS, the Natural job has to terminate abnormally. This can be
accomplished by calling the Natural IMS/TM service module CMSVC13D. If the job terminates either normally
or with a condition code, IMS does a clean-up and no restart is possible.

Every GSAM database structure which is to be used by Natural must be processed by the NATDBD procedure.
The assembly step of this procedure extracts the relevant information from the DBD source and simulates an
appropriate SEGM statement as shown in the following examples.

55Copyright © Software AG 2002

Support of GSAMExecution

Example 1 - Segment Description of Fixed-Length GSAM Records:

DBD NAME=TESTDB,ACCESS=(GSAM,BSAM)
DATASET DD1=INPUT,DD2=OUTPUT,RECFM=F,RECORD=80
DBDGEN
END

From the above source statements, NATDBD would simulate a segment with the name of the DBD and the
length as specified with the RECORD keyword:

SEGM NAME=TESTDB,BYTES=80

Example 2 - Segment Description of Variable-Length GSAM Records:

DBD NAME=TESTDB,ACCESS=(GSAM,BSAM)
DATASET DD1=INPUT,DD2=OUTPUT,RECFM=VB
DBDGEN
END

From the above source statements, NATDBD would simulate a segment with the name of the DBD, a maximum
length of 32760 and a minimum length of 8:

SEGM NAME=TESTDB,BYTES=(32760,8)

In both examples, the NDB name and the segment name are "TESTDB", and the generated DDM name would be
"TESTDB-TESTDB".

The Natural program to read this GSAM database would be as simple as:

READ TESTDB-TESTDB
 DISPLAY FIELDS-OF-TESTDB
LOOP
END

Copyright © Software AG 200256

ExecutionSupport of GSAM

Processing in CICS Pseudo-Conversational Mode or under
IMS/TM
When Natural is running under CICS in pseudo-conversational mode (that is, with NATPARM parameter
PSEUDO=ON) or under IMS/TM, the Natural task/transaction is terminated following each write to a terminal,
and a new task/transaction is started when new input is entered through the terminal. Because a syncpoint is
forced at the end of the task/transaction, all resources are released when the message is sent to the terminal.
Therefore, the DL/I PSB is no longer active, nor are any DL/I GET HOLD calls in effect.

To avoid consistency problems on the DL/I databases, Natural performs additional processing when it is running
in CICS pseudo-conversational mode or under IMS/TM:

1. If a DL/I GET HOLD call is still active at the end of the task/transaction, the values of the fields read by the
program that issued the corresponding READ or FIND (only the fields used, not the whole segment) are
saved in an internal table of Natural for DL/I.

2. When a new task/transaction resumes the Natural session and the program issues an UPDATE or DELETE
statement, Natural checks whether the field contents have been changed. If the check shows that the field
contents have not been changed, the UPDATE/DELETE is executed. If they have been changed, an error
message is returned by Natural notifying the user that the field values just read were changed by another
user in the system and that, therefore, the UPDATE/DELETE operation is not carried out.

Natural also performs automatic PSB repositioning following resumption of the task/transaction. A Natural
application is, therefore, not affected by pseudo-conversational mode, unless it uses conventional programming
techniques, for example COBOL or PL/1.

If the task/transaction is terminated due to a screen I/O while a READ or FIND loop is being executed on a
segment without a unique sequence field, Natural is not able to reposition the PSB in the database when the
task/transaction is resumed. The same may occur when using secondary indices with non-unique key fields in
pointer segments. Natural is not able to reposition the PSB in these instances because DL/I does not provide a
method of re-establishing position in the middle of non-unique keys or non-keyed segments.

57Copyright © Software AG 2002

Processing in CICS Pseudo-Conversational Mode or under IMS/TMExecution

Programming Language Considerations
This section covers the following topics:

Natural versus Third Generation Languages
Natural Statements with DL/I
Natural System Variables with DL/I

Natural versus Third Generation Languages
With a few exceptions Natural provides all of the functionality of third generation language programming in the
DL/I environment.

However, accessing DL/I data using Natural is significantly different from programming techniques used in a
third generation language. Natural application programmers do not have to code specific DL/I calls or build the
segment search arguments (SSAs). They do not need to concern themselves with PCB mask information or keep
track of PCB positioning between syncpoints.

Natural for DL/I operates as a standard DL/I application and although most of the DL/I call processing is done
internally, it is important to realize that all of the required DL/I processing is still performed:

PSBs are scheduled and terminated, PCBs are selected for use, database positioning is maintained, SSAs are
created, the most efficient DL/I calls are issued, PCB mask information is evaluated, GET HOLD calls are issued
before update or delete operations.

These tasks are all being performed for the application by Natural.

It is important to note that Natural is performing these tasks based on the information available in the application
program. If, for example, a READ or FIND statement in a program is lacking essential segment search
information, Natural selects a PCB, builds an SSA and issues a certain DL/I call based on this lacking
information.

The Natural programmers use the same Natural statements to manipulate data in DL/I as they would for VSAM,
Adabas or DB2.

Natural accesses DL/I segments based on the Natural DDM which is being referenced. Since the data access is
always for one specific segment type (the one defined by the DDM), Natural does not issue path calls nor
unqualified calls; that is, calls where the segment name is not specified.

Note:
Due to the structure of the Natural programming language, application control over DL/I call command
codes is not available.

The LOG, STAT and GSCD call functions are not supported for the IMS/TM environment.

Copyright © Software AG 200258

Programming Language ConsiderationsProgramming Language Considerations

Natural Statements with DL/I
BACKOUT TRANSACTION
DELETE
DISPLAY
END TRANSACTION
FIND
GET TRANSACTION DATA
READ
RELEASE
STORE
UPDATE
WRITE
Statements not Available for DL/I

This section mainly consists of information also contained in the Natural Statements documentation, where each
Natural statement is described in detail, including notes on DL/I usage where applicable. Summarized below are
the particular points a programmer has to bear in mind when using Natural statements with DL/I.

Any Natural statement not mentioned in this section can be used without restrictions with DL/I.

BACKOUT TRANSACTION

This statement is used to back out all database updates performed during the current logical transaction.

How the statement is translated and which command is actually issued depends on the TP-monitor environment:

Under CICS, the BACKOUT TRANSACTION statement is translated into an EXEC CICS ROLLBACK
command.
However, in pseudo-conversational mode (PSEUDO=ON), only changes made to the database since the last
terminal I/O are undone. This is due to CICS-specific transaction processing.
In batch mode and under IMS/TM, Natural for DL/I issues ROLB calls without checking the CMPAT
setting in the corresponding NSB.
However, under IMS/TM, only changes made to the database since the last terminal I/O are undone. This is
due to IMS/TM-specific transaction processing.

Because PSB scheduling is terminated by a syncpoint/checkpoint request, Natural saves the PCB position before
executing the BACKOUT TRANSACTION statement. Before the next command execution, Natural reschedules
the PSB and tries to set the PCB position as it was before the backout.

Note:
The PCB position might be shifted forward if any pointed segment had been deleted in the time period between
the BACKOUT TRANSACTION and the following statement.

DELETE

The DELETE statement is used to delete a segment from a DL/I database, which also deletes all descendants of
the segment.

DISPLAY

The DL/I AIX fields can be displayed only if a PCB is used with the AIX specified in the parameter PROCSEQ.
If not, an error message is returned by Natural for DL/I at runtime.

59Copyright © Software AG 2002

Natural Statements with DL/IProgramming Language Considerations

END TRANSACTION

This statement indicates the end of a logical transaction and releases all DL/I data locked during the transaction.
All data modifications are committed and made permanent.

How the statement is translated and which command is actually issued depends on the TP-monitor environment:

Under CICS, the END TRANSACTION statement is translated into an EXEC CICS SYNCPOINT
command.
In batch mode and non message-driven BMP environments, Natural for DL/I issues CHKP calls without
checking the CMPAT setting in the corresponding NSB.
In MPP and message-driven BMP environments, the END TRANSACTION statement is not translated into
a CHKP call, but is ignored, because CHKP calls imply GU calls. As Natural is a conversational
transaction, you must reply to the terminal before requesting the next message (that is, before issuing the
next GU call). An implicit end-of-transaction is issued after each terminal I/O.

Because PSB scheduling is terminated by a syncpoint/checkpoint request, Natural saves the PCB position before
executing the END TRANSACTION statement. Before the next command execution, Natural reschedules the
PSB and tries to set the PCB position as it was before the END TRANSACTION statement.

Note:
The PCB position might be shifted forward if any pointed segment had been deleted in the time period
between the END TRANSACTION and the following command.

With batch-oriented BMP regions, user data can be checkpointed on the IMS system log data sets. This is done
by supplying an 8-byte checkpoint ID as the first operand in the END TRANSACTION statement, and by
specifying the areas to be checkpointed as additional operands.

If the database specified with the profile parameter ETDB (as described in the Natural Parameter Reference
documentation) is not the same as the database affected by the transaction, the first operand of the END
TRANSACTION statement will be used as checkpoint ID for the ETDB database, while "NATDLICK" will be
used as checkpoint ID for the other database not specified with the ETDB parameter.

The total area to be checkpointed must not exceed 1992 bytes; see also Symbolic Checkpoint/Restart Functions.

FIND

With DL/I, the Natural FIND statement is typically used when a specific search criterion is known and specific
segments are to be retrieved. This issues a DL/I GET UNIQUE call. However, if the FIND statement specifies a
lower level segment and is within an active READ or FIND loop for an ancestor segment, it generally results in a
DL/I GET NEXT WITHIN PARENT call.

The FIND statement initiates loop processing, which is active until all segment occurrences which match the
search criterion have been read.

When accessing a field starting after the last byte of the given segment occurrence, the storage copy of this field
is filled according to its format (numeric, blank, etc.).

FIND FIRST, FIND NUMBER and FIND UNIQUE are not permitted. The PASSWORD, CIPHER, COUPLED
and RETAIN clauses are not permitted either.

In the WITH clause, you can only use descriptors that are defined as key fields in DL/I and marked with "D" in
the DDM.

When connecting search criteria, the following has to be observed:

Copyright © Software AG 200260

Programming Language ConsiderationsEND TRANSACTION

Connecting search criteria for segment type A results in multiple qualification statements within one DL/I
segment search argument (SSA). Connecting search criteria for segment types A and B results in multiple SSAs.
Therefore, the Boolean operator OR cannot be used to combine search criteria for different segment types.

61Copyright © Software AG 2002

FINDProgramming Language Considerations

GET TRANSACTION DATA

This statement retrieves checkpoint data saved by an END TRANSACTION statement. The first parameter of
this statement must be an 8-byte checkpoint ID. The remaining operands must be listed in the same sequence,
length and format as in the corresponding END TRANSACTION statement; see also Symbolic
Checkpoint/Restart Functions.

READ

The READ statement should be used to process a set of segment occurrences in sequential order and usually
results in a DL/I GET NEXT call.

When the READ statement is used, segments are retrieved based on the sequence field of the root segment or
based on a secondary index field. Since the READ statement initiates sequential access of the database, it is
important to understand that the EQUAL TO clause means the same thing as the STARTING FROM clause; it
initiates a sequential read loop beginning with the key value specified.

The READ statement initiates loop processing. A loop is active until all segment occurrences which match the
search criterion have been read.

The PASSWORD and CIPHER clauses are not permitted.

READ IN PHYSICAL SEQUENCE is used to read records in the order in which they are physically stored in a
database. The physical sequence is the default sequence.

Note:
This is only valid when using Natural with HDAM databases.

READ BY ISN is not valid when using Natural with DL/I.

For Natural, the descriptor used must be either the sequence field of the root segment or a secondary index field.
If a secondary index field is specified, it must also be specified in the PROCSEQ parameter of a PCB. Natural
uses this PCB and the corresponding hierarchical structure to process the database.

Copyright © Software AG 200262

Programming Language ConsiderationsGET TRANSACTION DATA

RELEASE

The RELEASE statement is not applicable for DL/I usage, since it releases sets of records retained by a FIND
statement that contained a RETAIN clause, which is not valid when using Natural with DL/I.

STORE

This statement can be used to add a segment occurrence.

If the segment occurrence is defined with a primary key, a value for the primary key field must be provided.

In the case of a GSAM database, records must be added at the end of the database (due to GSAM restrictions).

The USING/GIVING NUMBER clause is not valid when using Natural with DL/I.

If the SET/WITH clause is used, the following applies with Natural for DL/I:

Values must be provided for the segment sequence field and for all sequence fields of the ancestors.
Only I/O (sensitive) fields can be provided.
A segment of variable length is stored with the minimum length necessary to contain all fields as specified
with the STORE statement. The segment length will never be less than the minimum size specified in the
SEGM macro of the DBD.
If a multiple-value field or a periodic group is defined as variable in length, at the end of the segment only
the occurrences as specified in the STORE statement are written to the segment and define the segment
length.

63Copyright © Software AG 2002

RELEASEProgramming Language Considerations

UPDATE

This statement can be used to update a segment in a DL/I database. The segment length is increased (if
necessary) to accommodate all fields specified with the UPDATE statement. If a multiple-value field or a
periodic group is defined as variable in length, only the occurrences as specified in the UPDATE statement are
written to the segment.

The DL/I AIX field name cannot be used in an UPDATE statement. AIX fields, however, can be updated by
referring to the source field which comprises the AIX field.

DL/I sequence fields cannot be updated because of DL/I restrictions.

If the SET/WITH clause is used, only I/O (sensitive) fields can be provided. A segment sequence field cannot be
updated (DELETE and STORE must be used instead).

Due to GSAM restrictions, the UPDATE statement cannot be used for GSAM databases.

WRITE

With the WRITE statement, the DL/I AIX fields can be displayed only if a PCB is used with the AIX specified
in the parameter PROCSEQ. If not, an error message is returned by Natural for DL/I at runtime.

Statements not Available for DL/I

The following Natural statements are not available for DL/I users:

GET
GET SAME
HISTOGRAM
PASSW
RELEASE

Copyright © Software AG 200264

Programming Language ConsiderationsUPDATE

Natural System Variables with DL/I
With DL/I, the following restrictions apply to the following Natural system variables:

*ISN

As there is no DL/I equivalent to Adabas ISNs, the system variable *ISN is not available with Natural for DL/I.

*NUMBER

With Natural for DL/I, the Natural system variable *NUMBER does not contain the number of segment
occurrences found. It contains 0 if no segment occurrence satisfies the search criterion and a value of
8,388,607=X’7FFFFF’ if at least one segment occurrence satisfies the search criterion.

65Copyright © Software AG 2002

Natural System Variables with DL/IProgramming Language Considerations

Problem Determination Guide
The items listed below are cross-referenced by Natural for DL/I error messages. They are supplied to advise
Natural programmers, DL/I database administrators and system support personnel of actions required to correct a
given problem.

Item 1: Activate Natural Trace Facility for DL/I

How to activate the Natural trace facility for DL/I:

Dynamic trace activation:
Execute the command NDLTRACE in library SYSDDM as follows:
NDLTRACE ON parm1 parm2 parm3
Permitted values for trace parameters are either CMD, SER, ROU (according to the specifications in the
given error message) or ALL to trace all events of Natural for DL/I.
Initial trace activation:

1. Either code the TRACE parameter in the NDLPARM module according to the specifications in the
given error message or specify TRACE=ALL to trace all events of Natural for DL/I.

2. Assemble the NDLPARM module.
3. Link-edit the load module that contains Natural for DL/I.

How to create and display the Natural trace for DL/I:

1. Start the Natural session with DSIZE=64 (or smaller). This is required because the trace data is written into
in the DSIZE buffer.

2. Activate the trace facility (see above) and specify the following commands:

TEST DBLOG D Start DBLOG for DL/I.

... Reproduce your problem here.

TEST DBLOG D Display the data logged.

Note:
The Natural trace facility for DL/I is available in all Natural for DL/I environments.

Copyright © Software AG 200266

Problem Determination GuideProblem Determination Guide

Item 2: Obtain the Program Listing

Item 3: Obtain the View Listing

Item 4: Obtain the DBD Macros

Item 5: Obtain the PSB Macros

Item 6: Obtain the NDB Description Printout

To obtain the printout, execute the Natural module NDLBLOCK in the library SYSDDM with the following
parameters:

block type (3 bytes alphanumeric) = NDB
block name (8 bytes alphanumeric) = dbd-name

Item 7: Obtain the NSB Description Printout

To obtain the printout, execute the Natural module NDLBLOCK in the library SYSDDM with the following
parameters:

block type (3 bytes alphanumeric) = NSB
block name (8 bytes alphanumeric) = psb-name

Item 8: Obtain the UDF Description Printout

To obtain the printout, execute the Natural module NDLBLOCK in the library SYSDDM with the following
parameters:

block type (3 bytes alphanumeric) = UDF
block name (8 bytes alphanumeric) = db-id**file-number
(that is, 3 digits for the database ID, a literal separator "**" and 3 digits for the file-number)

Item 9: Obtain a DUMP

Item 10: Obtain the NDLPARM Listing

Item 11: Obtain the NATDBD Procedure Output

Item 12: Obtain the NATPSB Procedure Output

67Copyright © Software AG 2002

Problem Determination GuideProblem Determination Guide

Performance Considerations
This section lists some special considerations which may help you increase the performance of your Natural for
DL/I environment.

Parameters
Global and Local Data Areas
FIND Statements
Direct Access to Lower Levels
DBLOG Utility

Parameters
Set the DLISIZE parameter to 0 if no DL/I database is to be accessed.

Do not modify NDLPARM parameters, unless requested by a corresponding Natural for DL/I error message.
Unused buffers are compressed by the Natural compression algorithm.

DBID

Use the same DBID for all segment types (DDMs) of a given NDB, because an OPEN command is generated for
each DBID.

Global and Local Data Areas
Keep global and local data areas as small as possible, because the format buffer contains all fields of the global
and local data areas, not only those which are referenced by a Natural I/O statement.

FIND Statements
If the sequence field is unique, use a FIND(1) statement instead of a FIND statement to prevent an unnecessary
second DL/I call.

Direct Access to Lower Levels
Access segments on lower levels directly (by using the field sequence of the parent); that is, access ancestor
segments only if their contents are required by the application program.

In such cases, UDFs of ancestor segments as well as DL/I fields of ancestor segments which are not sequence
fields are not available to the application program.

DBLOG Utility
Use the Natural utility DBLOG utility ("TEST DBLOG D") to tune your application; see Logging Database
Calls (DBLOG) in the section Debugging and Monitoring.

Copyright © Software AG 200268

Performance ConsiderationsPerformance Considerations

DL/I Services
When you invoke "DL/I Services" from the SYSDDM main menu, the DL/I Services Main Menu is displayed
which offers you the following functions:

NDB Maintenance
An NDB is a DL/I DBD (database description) which is defined to Natural.
NSB Maintenance
An NSB is a DL/I PSB (program specification block) which is defined to Natural.

NDB Maintenance
This section covers the following topics:

Menu and Functions
Select an NDB from a List
Select an NDB Segment from a List
Edit an NDB Segment Description
Generate DDM from Segment Description

Menu and Functions

When you select NDB Maintenance on the DL/I Services Main Menu, the NDB Maintenance menu is displayed:

 14:37:12 **** DL/I Services **** 97-02-15
 - NDB Maintenance -

 Code Functions
 ---- -------------------------------------
 S Select an NDB from a List
 P Purge an NDB
 L Select an NDB Segment from a List
 E Edit an NDB Segment Description
 G Generate DDM from Segment Description
 ? Help
 . Back
 M End
 ---- -------------------------------------
 Enter Code: ?
 NDB Name:
 Segment Name:

 ENTER PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12
 Help Back End

69Copyright © Software AG 2002

DL/I ServicesDL/I Services

The individual NDB maintenance functions are listed below:

Function Explanation

Select an NDB from a List List the NDBs which are defined on the Natural system file.
You can then select NDBs from this list by entering the following function
codes:

P to purge an NDB,

L to list the segments of an NDB.

Purge an NDB Purge an NDB and its related segment descriptions from the Natural system file.
The name of the NDB to be purged must be specified.
Before this function is executed you are prompted to confirm the purge request.

Select an NDB Segment
from a List

List the segments of the specified NDB. You can then select segments from this
list for further processing.

Edit an NDB Segment
Description

Edit a segment description. The segment name and its corresponding NDB name
are required when invoking this function.
A database ID (DBID) and file number (FNR) must have been assigned to the
segment description (function code "A" on the Segment List display) before it
can be edited.

Generate DDM from
Segment
Description

Generate a DDM from a segment description. The DDM definition is a Natural
DDM of the segment. Prior to execution of this function, a DBID and FNR must
have been assigned to the segment (function code "A" on the Segment List
display).

Select an NDB from a List

When you select an NDB from a list, a list containing all NDBs defined on the Natural system file is displayed.
In addition to the NDB name the following is displayed:

L/P Indicates if ACCESS=LOGICAL or not.

length Length of the NDB.

NoSGMS Number of the segment types in the NDB.

ACCESS The access specification taken from the DBD.

Copyright © Software AG 200270

DL/I ServicesSelect an NDB from a List

From the list, you can select NDBs for further processing by entering the following function codes in the "Func"
column next to the NDB Names:

Code Function

P Purge NDB
This function is identical to the "Purge NDB" function available on the NDB Maintenance menu. It
deletes an NDB and its related segment descriptions from the Natural system file. Before the function is
executed you are prompted to confirm the purge request.

L List NDB Segments
This function is identical to the "Select NDB Segment from a List" function available on the NDB
Maintenance menu. It lists the segments of the selected NDB. For details, see Select an NDB Segment
from a List.

Select an NDB Segment from a List

When you select an NDB segment from a list, a list containing all segments of the specified NDB is displayed. If
you do not know the NDB name, use the "Select an NDB from a List" function.

 10:50:48 **** DL/I SERVICES **** 97-08-20
 - Segment List -
 DBD Name = ED00DBD
 Func Level Segment DBID FNR Seg-Lgh UDF-Lgh Response
 --------------------------- Top of Data --------------------------------
 _ 1 COURSE 246 _10 75-80 100
 _ 2 PREREQ 246 _11 36-36 40
 _ 2 OFFERING 246 _12 41-41 40
 _ 3 TEACHER 246 _13 24-24 60
 _ 3 STUDENT 246 _14 40-40 40
 _ ___ ___
 _ ___ ___
 _ ___ ___
 _ ___ ___
 _ ___ ___
 ----------------------------- Bottom -----------------------------------
 Code .. _ (? Help . Back M End)
 Func = E Edit Segment Description A Assign DBID and FNR
 F Free DBID and FNR ’ ’ Change DBID and FNR
 G Generate DDM N Take New Copy of UDF

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Exec Help Exit Canc

Next to each segment you can enter one of the function codes listed below. You can mark several segments at
the same time with a function code. If you do not enter any code, the list is scrolled forward until the bottom of
the list is reached.

71Copyright © Software AG 2002

Select an NDB Segment from a ListDL/I Services

You can enter one of the following codes next to a segment on the segment list to perform one of the following
functions:

Code Function

A Assign DBID/FNR
Assign a DBID and a FNR to the selected segment.
The DBID is a number in the range from 1 to 254. It must be contained in the database ID list (NTDB
macro) of the Natural parameter module NATPARM. All Natural DDMs which refer to a DL/I segment
must have a DBID belonging to this range. If a DBID has not been entered, a default value is assigned,
which is the entry with the lowest value in the DBID list specified in the Natural parameter module. For
a given NDB, all segments should be assigned the same DBID. Otherwise, Natural assumes different
databases and generates an OPEN command (which, however, is ignored by the DL/I call handler).
The FNR is a number in the range from 1 to 254. The FNR must be specified; no default value is
assumed by Natural. The segments of a logical NDB must have file numbers different from those
assigned to the segments of the physical NDB.
The DBID/FNR combination must be unique on the Natural system file. It is used by Natural to
uniquely determine the NDB and the segment within the NDB.

E Edit Segment Description
Edit the description of a segment within a given NDB. The function is the same as the "Edit an NDB
Segment Description" function which you can invoke from the NDB Maintenance menu. Before you
can edit a segment description, a DBID and FNR must have been assigned to the segment (see above).

F Free DBID/FNR
Release the DBID and FNR which have previously been assigned to the segment. Once a DBID and
FNR have been released, they are available for assignment to another segment.

G Generate DDM
Generate a DDM definition from a segment description. The function is the same as the "Generate DDM
from Segment Description" function which you can invoke from the NDB Maintenance menu.
Before you can generate a DDM from a segment description, a DBID and FNR must have been assigned
to the segment (see above).
The generated DDM is a Natural view of the segment. Once it has been generated, the DDM can be
modified and cataloged.

N Take New Copy of UDF
Refresh the user-defined fields (UDFs) of a segment when the UDFs of the source segment have been
changed. This applies to UDFs of segments belonging to a logical NDB and to UDFs of logical virtual
children. Before you can execute this function, a DBID and FNR must have been assigned to the
segment (see above).

blank Change DBID/FNR
Change a previously assigned DBID and/or FNR.
For changing a DBID or FNR, the same rules concerning DBID and FNR specification apply as for
assigning a DBID/FNR (see above).

Copyright © Software AG 200272

DL/I ServicesSelect an NDB Segment from a List

Edit an NDB Segment Description

Additional segment fields, so-called user-defined fields (UDFs), can be defined.

This function is invoked either by entering function code "E", an NDB name and a segment name on the NDB
Maintenance menu, or by selecting the segment from the "Segment List" (by marking it with function code "E").
A DBID and a FNR must have been assigned to a segment description (function code "A" on the Segment List
display) before it can be edited.

 EDIT command: DBD ED00DBD SEGMENT STUDENT SEGLGH 40-40
 ALL LEV SN FIELD NAME START DLI MAXOCC FOR LGH V

 1 PM EMPNO 00001 SQU A 6
 1 PN NAME 00007 SRC A 33
 1 PO GRADE 00040 SRC A 1
 1 AA BIRTHDATE 00025 A
 2 AB DATE-DD N 2
 2 AC DATE-MM N 2
 2 AD DATE-YY N 2
 1 AE BIRTHPLACE A 10
 1 AF STUDENT-NAME PN A 18

The following information is displayed on the status line at the top of the screen:

DBD Name of the DBD which contains the edited segment.

SEGMENT Name of the edited segment.

SEGLGH Minimum and maximum length of the edited segment, separated by a hyphen.

DL/I fields and user-defined fields are displayed as shown above. You can add, delete or modify UDFs. DL/I
fields, however, can neither be added nor deleted. If the specification "TYPE=P" is included in the FIELD
statement of the DL/I DBD, the format of the field can be changed from "P" (decimal packed unsigned) to "S"
(decimal packed signed) on the edit segment description screen. FOR (format) is the only attribute of a DL/I
field you can modify. In particular, it is not possible to change the name of a DL/I field, because it is used by
Natural to build the segment search arguments (SSA). If the name of a DL/I field is to be changed, the field can
be redefined as an UDF.

Edit commands are available to copy or delete single lines or to insert a group of empty lines. In addition,
commands for scrolling forward or backward are provided. For details you can enter a question mark in the
"command" field to display the corresponding help information.

After modification of segment field attributes you can save the description by entering "SAVE" in the
"command" field.

73Copyright © Software AG 2002

Edit an NDB Segment DescriptionDL/I Services

The following field definition attributes are displayed and can be modified for user-defined fields:

Attribute Description

LEV Level number used to define a group of fields.

SN Short name of the field as used internally by Natural.

FIELD NAME Name of the field as used in the application programs.

START Start position of the field in the segment.

DLI Type of the DL/I field, as follows:

SIX secondary index field

SQU sequence field (unique)

SQM sequence field (multiple)

SRC search field

MAXOCC Maximum number of occurrences of a multiple field or periodic group.

FOR Format of the field.

LGH Length of the field.

V Variable field length indicator.

Copyright © Software AG 200274

DL/I ServicesEdit an NDB Segment Description

Each user-defined field can be defined as follows:

Field Type Description

Elementary
Field

A field that contains only one value in a single segment.
Example: Personnel number

Multiple
Field

A field that can contain more than one value in a single segment. Reference to a particular value
of a multiple field can be made by appending a one to three-digit subscript (value 1 - 191) to the
field name.
Example: Languages - English, German, Italian

Group A series of one or more adjacent fields that can be referenced with a single name (the group
name). You can also refer to a single field of a group by specifying its name.
Example:

01 Address Group field

02 City Elem. field

02 Street " "

02 Number " "

Periodic
Group

A group which is repeated in multiple adjacent occurrences in a single segment. For a periodic
group it is possible to refer to a range of occurrences (or a field within a periodic group) by
specifying the first and the last occurrence number to be referenced (connected by a hyphen (-))
after the name and in ascending order. Multiple-value fields or periodic groups are not allowed
within a periodic group.
Example: Several addresses

Since DL/I fields cannot be modified as described above (with the exception of FORMAT), they cannot be
directly defined as a group. To define a DL/I field as a group, it is necessary to redefine it as a user-defined field
which then can be redefined as a group. In a DDM, these user-defined fields must not be specified as descriptor
fields. When a DDM is generated, the UDFs are marked as non-descriptor fields.

Example - Redefinition of a DL/I Sequence Field as a Group:

The description of the segment STUDENT within the DBD named ED00DBD is used as shown in the Segment
List screen above:

 LEV SN FIELD NAME START DLI NOCC FOR LGH V
 --
 1 PM EMPNO 00001 SQU A 6
 .
 .
 .

75Copyright © Software AG 2002

Edit an NDB Segment DescriptionDL/I Services

If the DL/I sequence field PM is to be "structured", it must be redefined as a user-defined field ("AAAAA" in the
figure below). This UDF can then be structured as required.

 LEV SN FIELD NAME START DLI NOCC FOR LGH V
 --
 1 PM EMPNO 00001 SQU A 6
 .
 .
 .
 1 AA AAAAA PM
 2 AB BBBBB A 3
 2 AC CCCCC A 3
 .
 .
 .

The group field "AAAAA" has no FORMAT/LENGTH specified. The length of a group is set equal to the sum
of all fields belonging to the group.

Copyright © Software AG 200276

DL/I ServicesEdit an NDB Segment Description

UDF Parameters

For each user-defined field on the above screen, parameters can be specified as listed and described in the
following table. The total length of all DL/I fields and user-defined fields must not exceed the segment length.

When attributes of a UDF are modified and an old copy of this UDF is contained in the shared UDF buffer pool,
the old copy is marked "invalid". If the UDF is referred to again by a Natural program, the modified UDF is read
from the Natural system file. Therefore, it is not necessary to restart the Natural session if a UDF has been
modified. However, this applies only to physical UDFs; that is, to UDFs of a physical NDB. If a physical UDF is
modified and a logical NDB refers to the appropriate segment type, the logical UDF is not marked "invalid" in
the buffer pool. To invalidate a logical UDF it is necessary to restart the TP monitor or to execute function "N"
(Take New Copy of UDF) of the Segment List screen on the appropriate segments in the logical NDB.

Field Description

LEV (level number) A one-byte value used to define a group. A field is a group only if the subsequent field
has a higher level number. The field immediately after the last group element must have a
lower level number. A group can be defined within another group. The level number of
the first user-defined field must be 1.

SN (short name) The name used internally by Natural to identify the field. It must be two bytes in length,
the first character must be alphabetic in the range from A to G (E is not permitted). The
second character can be alphanumeric (that is, up to 216 UDF fields can be defined). If
the segment is a logical child, the first character must be alphabetic in the range from H to
M. Short names must be unique among a segment type.

FIELD NAME External field name, up to 19 bytes long.

START The start position of the field in the segment. The position can be specified as absolute by
giving a three-digit number or it can be specified as relative, by giving the short name of
a previously defined field which is being redefined.
It is important to specify the start position for the first user-defined field; otherwise, a
default of 1 is used, which may cause overlapping with previous DL/I fields. The default
for all other user-defined fields is the position immediately after the previous field.
The redefinition of fields is possible only for fields which have the same level number.
When the level is higher than 1 (that is, for a field inside a group), only the last field can
be redefined with the same level number. An absolute position must not be specified for a
field within a group.

MAXOCC The maximum number of occurrences of a multiple -value field or periodic group in a
segment.

FOR (format) Standard field formats are:

A Alphanumeric

B Binary

F Fixed Point

P Packed decimal unsigned; that is, the zone halfbyte of the last byte is X’F’.

S Packed decimal signed; that is, the zone halfbyte of the last byte is X’C’ (positive) or
X’B’ (negative).

N Unpacked

A group has no format. When the group is referenced, the fields within the group are
always returned (by Natural) according to the standard format of each individual field.

77Copyright © Software AG 2002

Edit an NDB Segment DescriptionDL/I Services

Field Description

LGH (length) Field length is a three-digit number; it must not exceed the maximum length permitted.
These are as follows:

253 bytes for alphanumeric fields (A),

126 bytes for binary fields (B),

4 bytes for fixed point (F),

14 bytes for packed decimal unsigned (P),

14 bytes for packed decimal signed (S),

27 bytes for unpacked decimal (N)

In addition, the length specified must not exceed the segment length. Length must not be
specified for a group. The length of packed fields is the field length in bytes.

V (variable) Depending on its value, "V" or blank, this parameter indicates whether a field has a
variable length. Fields can be specified as variable only if the segment is a segment of
variable length.
Only one field can be defined as variable within a given segment description.
An elementary field can be specified as variable in length only if it is the last field in the
segment. A multiple field or a periodic group can be specified as variable in length
regardless of its position in the segment.
When applied to a multiple field or a periodic group, a setting of "VARIABLE" means
that the number of occurrences is not known at definition time; therefore, MAXOCC
should be specified using the maximum expected value.

Copyright © Software AG 200278

DL/I ServicesEdit an NDB Segment Description

Generate DDM from Segment Description

This function is invoked either by using the "G" function code of the NDB Maintenance menu - then an NDB
name and a segment name must be specified -, or by selecting the segment from the "Segment List", by marking
it with the "G" function code.

A DBID and a FNR must have been assigned to a segment description (function code "A" on the Segment List
display) before a DDM can be generated.

The DDM is generated from a segment description and represents a Natural view of the segment. It must be
generated and cataloged before the corresponding segment can be referenced by a Natural program. After
generation, default options for field headers or edit masks (decimal positions) can be modified in the DDM. See
Catalog DDM and Edit DDM in the Natural Utilities for Mainframes documentation for corresponding
information.

It should be noted, however, that default options for field headers or edit masks (decimal positions) are stored
with the DDM and not with the NDB or UDF. The data in the NDB or UDF reflects what is allowed by the DL/I
FIELD macro in which the length can be specified only in bytes (decimals are not allowed). Consequently, when
regenerating the DDM, prior modifications in the DDM must be applied again by the user.

In DL/I a program must be able to reference search fields, sequence fields and secondary index fields of ancestor
segments in order to build a certain search criterion; therefore, DDMs for DL/I segments can also include fields
which are not part of the actual physical segment.

To satisfy the requirements for DL/I processing, a DDM must contain all the fields which can be referenced.
Therefore, the generated DDM can contain the following fields:

DL/I sequence fields, search fields and secondary index fields of the current (physical) segment. These
fields have been defined in the DBDGEN source for this segment. When the DDM is generated,
information on these fields is obtained from the NDB control block for this segment. DL/I sequence fields
and secondary index fields are marked as descriptor ("D"), search fields are marked as non-descriptor ("N").
All of these fields can be used to qualify search requests.
DL/I sequence fields and secondary index fields of all the ancestor segments. These fields have been
defined in the DBDGEN source for the ancestor segments. When the DDM is generated, information on
these fields is obtained from the NDB control blocks for the ancestor segments. These fields are marked as
descriptor ("D"). They can be used to qualify search requests.
DL/I search fields of all the ancestor segments. These fields have also been defined in the DBDGEN source
for the ancestor segments. When the DDM is generated, information on these fields is also obtained from
the NDB control blocks for the ancestor segments. However, these fields are marked as superdescriptor
("S"). They can be used to qualify search requests.
Fields of the current segment defined by the user (UDFs). When the DDM is generated, information on
these fields is obtained from the UDF control blocks. These fields cannot be used to qualify search requests.

Fields of format "S" in the segment description (see UDF Parameters) generate format "P" in the DDM.

The following tables summarize how the various types of fields can be processed using Natural I/O statements.
They illustrate which fields can be used to qualify search requests, and which fields can be used with the
statements DISPLAY, UPDATE or STORE. In addition, the tables indicate whether the field in the generated
DDM is marked as descriptor, superdescriptor or non-descriptor.

79Copyright © Software AG 2002

Generate DDM from Segment DescriptionDL/I Services

Current Segment:

Type of field FIND/READ DISPLAY UPDATE STORE Marked

DL/I sequence yes yes no yes D

DL/I search yes yes yes yes D

DL/I SIX yes yes no no D

UDF no yes yes yes blank

Ancestor Segment:

Type of field FIND/READ DISPLAY UPDATE STORE Marked

DL/I sequence yes yes no yes D

DL/I search yes no no no S

DL/I SIX yes yes no no D

UDF no no no no blank

Note:
The DL/I SIX fields can be DISPLAYed only if a PCB is used with this SIX specified in the PROCSEQ
parameter. If not, an error message is returned by Natural at runtime.

The DL/I SIX field name cannot be used in an UPDATE or STORE statement. SIX fields, however, can be
updated/stored by referring to the source fields which comprise the SIX.

The READ statement returns records in ascending sequence. The possible sequences for DL/I segments are
root sequence or the sequence of any secondary index.

As mentioned above, the generated DDM contains all fields of the current segment and all DL/I fields of the
ancestor segment(s), marked either as "D" or "S". The UDFs of the ancestor segments are not included in the
generated DDM because a DDM refers only to one segment.

The generated external name of the DDM is equal to the segment name prefixed by the DBD name.

Copyright © Software AG 200280

DL/I ServicesGenerate DDM from Segment Description

Example:

Name of DBD: ED00DBD

Name of segment: STUDENT

Name of generated DDM:ED00DBD-STUDENT

The generated external name of DL/I fields is equal to the name specified in the DL/I FIELD macro during the
DL/I DBDGEN procedure.

The generated external name of DL/I fields of ancestor segments is equal to the field name suffixed by the
segment name.

Example:

Name of DL/I field: LOCATION

Name of ancestor segment:OFFERING

Name of generated field: LOCATION-OFFERING

The generated external name of the UDFs is equal to the name specified by the user at definition time.

81Copyright © Software AG 2002

Generate DDM from Segment DescriptionDL/I Services

NSB Maintenance
When you select NSB Maintenance on the DL/I Services Main Menu, the NSB Maintenance menu is displayed.

From this menu, you can select the following NSB maintenance functions:

Function Explanation

Select an NSB from a list List the DL/I PSBs defined on the Natural system file. You can select NSBs
from this list by entering the function code

P to purge an NSB, or

L to list all PCBs and SENSEGs of an NSB.

Purge an NSB Delete an NSB and its related PCB descriptions from the Natural system file.
The name of the NSB to be deleted must be specified. Before this function is
executed, you are prompted to confirm the deletion.

List PCBs and SENSEGs of
an NSB

For any NSB specified, this function lists the PCBs and their sensitive segments.
If an indexed database exists, its name is displayed under the header
"PROCSEQ".

Select an NSB from a list:

 10:44:50 **** DL/I SERVICES **** 97-08-20
 - NSB List -

 Func NSB Name CMPAT Length NoPCBs Response
 ------------------ Top of Data -------------------
 _ DFSIVP6 YES 140 3
 _ PBNDL01 NO 160 3
 _ PBNDL02 YES 160 1
 _ PBNDL03 YES 160 3
 _ PBNDL04 YES 160 1
 _ PBNDL05 NO 80 1
 _ PBNDL97 YES 160 3
 _ PBNDL98 YES 200 5
 _ PBNDL99 NO 200 5
 _ PBPQA01 YES 60 5
 _ PBSUP06 NO 440 5
 -------------------- - More - ---------------------
 Code .. _ (? Help, . Back, M End)

 Func .. P (Purge NSB) L (List PCBs and SENSEGs)

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Exec Help Exit Canc

Copyright © Software AG 200282

DL/I ServicesNSB Maintenance

List PCBs and SENSECs of an NSB:

 10:46:57 **** DL/I SERVICES **** 97-08-20
 - PCB List -
 NSB Name: PBNDL01 (CMPAT=NO ,Length=00160)

 Number of PCB’s NDB Name Level SENSEG PROCSEQ
 -------------------------- Top of Data --------------------------
 3 ED00DBD
 1 COURSE
 2 PREREQ
 2 OFFERING
 3 TEACHER
 3 STUDENT

 -------------------------- Bottom -----------------------------

 Code .. _ (? Help . Back M End)

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Exec Help Exit Canc

 10:49:10 **** DL/I SERVICES **** 97-08-20
 - NDB List -

 Func NDB Name L/P Length NoSGMs Access Response
 ---------------------- Top of Data ---------------------
 _ CCCBTD00 P 460 6
 _ DNDL01 P 540 5
 _ DNDL02 P 620 10
 _ DNDL03 L 820 10
 _ DNDL04 P 60 1 GSAM
 _ DPQA04 P 480 5
 _ DSUP02 L 1720 15
 _ DSUP05 P 380 5
 _ DSUP09 P 340 2
 _ DSUP10 L 880 10
 _ DUSA01 P 320 5 HDAM
 ------------------------ - More - -----------------------
 Code .. _ (? Help, . Back, M End)

 Func: P (Purge NDB) L (List NDB Segments)

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Exec Help Exit Canc

83Copyright © Software AG 2002

List PCBs and SENSECs of an NSB:DL/I Services

	Cover Page
	page 2

	Table of Contents
	Natural for DL/I - Overview
	General Information
	Basic Principles
	Accessing DL/I Data

	Natural Parameter Modifications for DL/I
	Parameters in NDLPARM
	DFBNUM - Maximum Entries in Translated Format Buffer
	DFFNUM - Maximum Fields in Single Entry of Translated Format Buffer
	FLBNUM - Number of Entries in Fast Locate Buffer
	INGSIZE - Initial Size of Buffer to Copy Parameter List
	INGOSIZ - Initial Size of I/O Area for DL/I Calls
	INITCAL - Issues INIT Call at Transaction Start
	PCBLEV - Maximum Number of PCB Levels
	PCBNUM - Maximum Number of PCBs in a PSB
	RELEVNT - Requests Relocation Event
	RESINDB - NDB Resident in Buffer Pool
	RESINSB - NSB Resident in Buffer Pool
	RESIUDF - UDF Resident in Buffer Pool
	SASIZE - Size of Natural Save Area for DL/I
	SEQNUM - Maximum Number of Nested Sequential Accesses
	SEQSSA - Maximum Size of an SSA
	THCSIZE - Table Size to Save Natural Field Values
	TRACE - Trace Options
	TYPCHCK - Numeric/Packed Data Check
	TYPWARN - Issues Data Check Warning
	WORKLGH - Size of Work Areas

	Storage Estimates
	Natural for DL/I in OS/390 Environments

	Installing Natural for DL/I
	Prerequisites
	Installation Tape - OS/390 Systems
	Copying the Tape Contents to Disk
	Step 1 - Copy data set COPY.JOB from tape to disk
	Step 2 - Modify COPY.JOB to conform with your local naming conventions
	Step 3 - Submit COPY.JOB

	Installation Tape - VSE/ESA Systems
	Copying the Tape Contents to Disk

	Installation Procedure
	
	Step 1: Create the NDL Parameter Module - Job I055, Step 1500
	Step 2: Modify the Natural Parameter Modules - Jobs I060 and I080
	Step 3: Link the Natural Nucleus - Job I060 and I080
	
	Step 4: Establish a Natural Environment for DL/I

	Installation Verification

	Operation
	Procedure NATPSB
	Procedure NATDBD
	Using Logical Databases with Natural
	Using Index Databases with Natural

	Procedure NATUDF
	Segment Identification Statement
	Segment Field Description

	Generation of DDMs from DL/I Segment Types

	System File Structure
	The NDB Subfile
	The NSB Subfile
	The UDF Subfile
	Natural for DL/I Objects
	Displaying Keys of UDF Blocks
	Displaying the Size of NDL Objects
	Displaying NDL Objects
	Control Blocks in Separate Buffer Pool
	Control Blocks in Buffer Pool Blacklist
	Natural for DL/I Objects and Natural DDMs

	Natural Batch Utilities
	Transfer of NDBs/NSBs/UDFs from one System File to Another
	Unloading the NDBs, NSBs and UDFs
	Loading NDBs, NSBs and UDFs
	Selecting NDBs, NSBs and UDFs from a Dataset

	Utility NDUDFGEN for Natural Data Areas
	Input for NDUDFGEN

	Execution
	PSB Scheduling
	The NATPSB Command
	PSB Scheduling in a Batch Environment
	Batch Execution under OS/390
	Batch Execution under VSE/ESA

	PSB Scheduling in a CICS Environment
	PSB Scheduling in an IMS/TM Environment

	CALLNAT Interface
	The NDLPCBAD Subprogram
	The NDLPSBSC Subprogram

	Support of IMS-Specific Features
	Symbolic Checkpoint/Restart Functions - CHKP, XRST
	The INIT Call to Enable Data Availability Status Codes

	Fast Path Support
	Support of GSAM
	Processing in CICS Pseudo-Conversational Mode or under IMS/TM

	Programming Language Considerations
	Natural versus Third Generation Languages
	Natural Statements with DL/I
	BACKOUT TRANSACTION
	DELETE
	DISPLAY
	END TRANSACTION
	FIND
	GET TRANSACTION DATA
	READ
	RELEASE
	STORE
	UPDATE
	WRITE
	Statements not Available for DL/I

	Natural System Variables with DL/I
	*ISN
	*NUMBER

	Problem Determination Guide
	
	
	Item 1: Activate Natural Trace Facility for DL/I
	Item 2: Obtain the Program Listing
	Item 3: Obtain the View Listing
	Item 4: Obtain the DBD Macros
	Item 5: Obtain the PSB Macros
	Item 6: Obtain the NDB Description Printout
	Item 7: Obtain the NSB Description Printout
	Item 8: Obtain the UDF Description Printout
	Item 9: Obtain a DUMP
	Item 10: Obtain the NDLPARM Listing
	Item 11: Obtain the NATDBD Procedure Output
	Item 12: Obtain the NATPSB Procedure Output

	Performance Considerations
	Parameters
	DBID

	Global and Local Data Areas
	FIND Statements
	Direct Access to Lower Levels
	DBLOG Utility

	DL/I Services
	NDB Maintenance
	Menu and Functions
	Select an NDB from a List
	Select an NDB Segment from a List
	Edit an NDB Segment Description
	UDF Parameters

	Generate DDM from Segment Description
	Current Segment:
	Ancestor Segment:

	NSB Maintenance
	Select an NSB from a list:
	List PCBs and SENSECs of an NSB:

